
www.manaraa.com

Portland State University
PDXScholar

Dissertations and Theses Dissertations and Theses

1-1-2011

High Speed Wireless Networking for 60GHz
Candy Yiu
Portland State University

Let us know how access to this document benefits you.
Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized
administrator of PDXScholar. For more information, please contact pdxscholar@pdx.edu.

Recommended Citation
Yiu, Candy, "High Speed Wireless Networking for 60GHz" (2011). Dissertations and Theses. Paper 373.

10.15760/etd.373

https://pdxscholar.library.pdx.edu?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F373&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F373&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F373&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F373&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/open_access_etds/373?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F373&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.15760/etd.373
mailto:pdxscholar@pdx.edu


www.manaraa.com

High Speed Wireless Networking for 60GHz

by

Candy Yiu

A dissertation submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

Dissertation Committee:

Suresh Singh, Chair

Sergio Antoy

Fei Xie

Bryant York

Lisa Zurk

Portland State University

2011



www.manaraa.com

Abstract

This thesis examines the problem of providing high data-rate wireless connectivity

to users in indoor environments. The goal is to be able to reach Gbps/user rates

even when there are multiple users present. The technology that we study is to use

the 60 GHz spectrum whose special propagation properties make it ideally suited to

this task. The approaches developed include using multiple spatially distributed

smart antennas in a room or multiple co-located antennas to provide coverage

where needed and when needed. All the antennas are connected to a single access

point which allows us to dynamically change spectrum and link allocation among

the users (as they move or as their needs change). The innovations in this work

include the exploitation of the special properties of 60 GHz and the corresponding

design of algorithms for efficient spectrum allocation. We use detailed simulations

to demonstrate that very high data rates are indeed achievable.
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Chapter 1

INTRODUCTION

The opening of the 60GHz ISM (Industrial Scientific Medical) band has triggered

intense interest in industry as well as academia on exploring different ways to

exploit the available 5-7GHz bandwidth. The large amount of bandwidth available

makes it possible to deploy very high data rate links. Some use models being

studied include point-to-point links between buildings (similar to free space optics),

high data rate wireless networks in buildings, and as a replacement for wires within

computers. Our focus in this thesis is on wireless networks though the solutions

developed can be applied generally to any high frequency channel in the tens of

GHz or 100s of GHz range.

From a network design point of view, this frequency band offers a specific

challenge not seen at lower ends of the spectrum (for instance the bands we are

more familiar with, between 2-5GHz). At 60GHz, the signal attenuation is high

because of oxygen absorption and absorption by many materials commonly used in

construction. Therefore, reflected components of a signal tend to be significantly

attenuated as compared to a direct path. Furthermore, given the high frequency,

there is also significant attenuation with distance (88 dB/10m as compared with

60 dB/10m for 2.5 GHz). Therefore, as [15] points out, technologies such as MIMO

(Multiple Input Multiple Output) that rely on a rich multi-path environment are

not useful at this frequency. Indeed, typical WLAN (Wireless Local Area Network)

architectures used at lower frequencies (which exploit multi-path) are not suitable

1
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for 60GHz networks. This leads to the design challenge of how best to architect

WLANs at this frequency so as to provide high data rate coverage indoors.

The approach proposed by various authors is to build a WLAN around the

idea of highly directional smart antennas at the access points (AP) and users. The

benefit of these antennas is the high gain and adaptive beamforming. But the

drawbacks are many. For instance, links can be easily broken by obstacles as the

user moves behind an obstruction or if another person comes in the Line of Sight

(LoS) path between the user and AP (the high water content of the body is a very

good absorber of this frequency).

1.1 RESEARCH CONTRIBUTIONS

In this thesis we examine various design trade offs in building 60 GHz WLANs.

Some major challenges to overcome, and the problems we examine, are:

• 60 GHz is primarily targeted for indoor applications such as office and factory

environments. However, these environments have numerous obstructions

such as partitions, walls, metallic objects like filing cabinets, plasterboard

walls, glass walls, etc. All of these obstructions either completely block 60

GHz signals or attenuate them by 5-15dB. As a result, providing full cov-

erage in such complex spaces is a challenging problem where the constraint

is to minimize the number of access points deployed while also maximizing

throughput.

• While poor propagation of 60 GHz causes coverage problems, it also gives us

the opportunity to dramatically increase throughput by spatially re-using the

spectrum. For instance, two users located in the same room but separated

by a partition or in different directional beams of the AP’s antenna can use

the same spectrum with minimal interference. This is unlike 2-5 GHz where

2



www.manaraa.com

reflections are not severely attenuated and thus it is impossible to re-use the

same spectrum at close quarters. We study innovative ways of maximizing

spectrum re-use when APs are equipped with smart antennas.

• Given a deployed indoor WLAN, it is still possible for coverage to be in-

termittent due to changes in orientation of obstructions or due to people

walking around (since people are composed mainly of water, their bodies act

as excellent absorbers of this frequency). The problem we study is how to

design the coverage and spectrum allocation of a room to account for all

potential future disruptions.

The solutions to these challenges are based on a combination of careful AP place-

ment in the room, efficient resource allocation (where the resources are spatial and

frequency channels) and provisioning indirect paths to mitigate intermittent link

breakages.

The main contributions of this research are as follows:

• Design of optimal algorithms for providing 100% coverage in rooms with

arbitrary collections of obstructions [52, 48].

• Algorithms for ad hoc communication between arbitrary collection of devices

(without WLAN infrastructure) [51].

• Different architectures and resource allocation algorithms for maximizing

throughput per user and link repair algorithms [53, 50, 54, 49].

1.2 THESIS ORGANIZATION

In the next chapter, we provide a detailed literature survey. In Chapter 2, we

summarize the technical background related to this thesis. Chapter 3 reviews the

3
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60GHz properties. In Chapter 4, a summary of smart antennas is provided and

we describe the two types of antenna configurations we study for 60 GHz. The

access point placement study for 100% coverage given static obstructions is given

in chapter 5. Chapters 6 and 7 examine different architectures and resource allo-

cations to maximize throughput. Finally, the problem of maintaining connectivity

even in the presence of mobile obstructions (or link repair) is studied in chapter 8

followed by our conclusions in chapter 9.

4
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Chapter 2

RELATED WORK

2.1 TECHNIQUES FOR HIGH-SPEED WIRELESS

Over the past several years, many technologies have been developed to deliver

high data rates over wireless channels. Typically, the techniques developed exploit

some aspect of the particular frequency band or propagation environment under

consideration. Since the focus of the current work is on 60 GHz WLANs, it is

instructive to examine if and how existing technologies can be applied to this new

frequency regime.

Delivering high data rates to each user translates to the problem of maximizing

the Number of bits/Hz. Two of the factors that significantly degrade this metric

include, competition for the channel by multiple users and poor channel quality

resulting in lower spectral efficiency. The former problem is a MAC (Medium

Access Control) problem whereas the latter problem lies at the Physical Layer.

Our focus in this thesis is not on the MAC layer but rather on the physical layer

and the intersection between the MAC layer and the physical layer. Therefore, to

enable a comprehensive discussion of issues, we provide a quick summary of the

main issues at the MAC layer as they related to high data rate WLANs. In the

wireless domain, the number of users and the channel load offered by each user are

unknown (indeed, unknowable) quantities. Therefore, if n users have packets to

send or receive at some instant, determining who gets channel access is a difficult

problem to solve. Numerous solutions have been proposed in the past and they can

5
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be classified as either being random access or managed access. Examples of random

access include the CSMA/CA (Carrier Sense Multiple Access/Collision Avoidance)

used in 802.11 networks while example of managed access include splitting the

channel in time or frequency or code and statically allocating these sub-channels

to registered users. In random access solutions, a great deal of the channel is wasted

in contention for the channel while in managed access, since the sub-channels are

statically assigned, the inefficiencies come about when there is a load imbalance

between users. Thus, lightly loaded users barely use the sub-channel assigned to

them while heavy users see high delays since the capacity of sub-channels is lower.

As a result, the average bits/Hz is reduced.

The physical layer challenge has to do with the problem of improving channel

quality by exploiting properties of the channel itself. Imagine a simple model where

the AP and user are both equipped with single omni-directional antennas. The

channel between them will then consist of the strongest multi-path component

between them. Thus, obstructions that cause loss of a direct line of sight path will

result in a weaker signal being received (and hence lower data rate). Furthermore,

if there is another user present, then the problem is compounded because of MAC

layer contention between these two users for channel access. Some of the techniques

studied to enable high-speed wireless access are described below.

2.1.1 Time Division Multiple Access (TDMA)

A well known way to deal with the problem of contention for channel access is

to split the channel into time slots where a ‘master’ emits pulses to indicate time

boundaries and nodes transmit only in their assigned slot. The slots may be

allocated statically to individual users or dynamically using some form of periodic

reservation scheme. This technique lies at the boundary of the physical layer and
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MAC layer and is used in all modern cellular phone systems. The benefit of TDMA

is that it eliminates the problem of channel contention (that can consume a large

portion of the channel). However, uneven loading and the problem of having very

accurate clocks at users and the master (who emits the periodic pulses to indicate

time boundaries) render this solution unpalatable for many applications.

Despite these drawbacks, TDMA is an attractive solution at high frequencies

where the channel bandwidth is large. To understand the reason for this it is best

to see why random access techniques are a poor choice. Given a large bandwidth

(several Ghz, for example), the length of a packet, as measured in time, is very

short. For instance, if the channel bandwidth is 3 GHz, and we use a simple

modulation of 8 bits/Hz, we can transmit at 24 Gbps. If users are in a room

(say 15m long) then the round trip time between a pair is 10−7 seconds. In order

for random access techniques to work well, the packet length needs to be greater

than the round trip time. This means that the smallest packet we can have will

be longer than 2400 bits or 300 bytes. In typical Ethernet communication the

smallest packet is 64 Bytes. Thus, we will need to pad these packets to make them

300 Bytes long resulting in enormous wastage of bandwidth.

Therefore, TDMA has been proposed as the ideal technology to use at the

frequency bands available for WLANs at 19 and 25 GHz [20]. By using TDMA

we can ensure that packet transmissions do not collide and the protocols work

correctly. Furthermore, given > 1 GHz available bandwidth, we can easily ensure

better than 400Mbps rates for each user (since it is unlikely that more than tens

of users will be present in any room).
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2.1.2 Orthogonal Frequency Division Multiple Access (OFDM)

A solution related to TDMA is to divide the frequency band into mutually or-

thogonal channels and assign one channel statically to each user. We can show

that TDMA and OFDM are equivalent [38] and therefore the kind of data rates

achieved are similar. Note, however, that in OFDM the frequency sub-channels

are not as wide and therefore a packet length lasts much longer. As an example,

by dividing a channel into 16, we have a maximum Ethernet packet size of 32µsec.

This means that, in order to use contention based protocols like 802.11, we need

to ensure a minimum round trip delay between nodes of 19 meters which is easily

attainable. Indeed, OFDM is used in 802.11a/g protocols because it results in

better channel efficiency.

2.1.3 Multiple Input Multiple Output (MIMO), Spatial Division Mul-

tiple Access (SDMA)

MIMO is an innovative approach to improving channel efficiency by cleverly utiliz-

ing multi-path components of a transmission. Typically, a transmission will arrive

at the receiver via multiple reflected (and perhaps a direct) paths. In MIMO, each

transmitter and receiver has m and n antennas respectively. The transmitter gen-

erates m symbol streams and transmits them while the receiver combines the n re-

ceived signals to extract the transmitted symbols. This technique can result in very

high data rates (of the order ofm×n improvement) since we are utilizing more than

one transmitted component [32, 8, 12, 44]. Note, however, that this approach relies

on high quality reflected components. SDMA refers to the technique where we split

the propagation environment spatially. Thus, if two users are located at opposite

ends of a room, it is possible for them both to be simultaneously active if the AP
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uses directional antennas pointed at each of them. This effectively doubles the ca-

pacity and bits/Hz of the channel. There are numerous formulations of how to best

apply SDMA to a given WLAN [41, 23, 35, 47, 1, 22, 34, 4, 7, 21, 25, 16, 26, 24, 19, 3]

but they all share a common underlying model. The idea is, given some placement

of n users and some number of antenna elements at the AP, how can we assign

spatial channels to each user to maximize throughput. In a later chapter we dis-

cuss how directional transmissions can be enabled using smart antennas. For now,

it is reasonable to assume that each user can be served by an isolated beam of a

directional transmission. Naturally, different transmissions will have very different

signal quality (some might be direct paths between the AP and user while others

may be reflected). Thus, the problem formulation for maximizing system capacity

reduces to one of resource allocation.

2.1.4 Distributed Antenna Systems (DAS)

There have also been some results on using distributed antenna systems (DAS)

in WLAN environments. However, the purpose of using these is different from

ours (all antennas transmit the same signal in DAS systems). Thus, [43] uses

multiple antennas in a room (with appropriate amplification/filtering) to send a

high data-rate transmission from one device to another that is across the room.

[5] uses multiple antennas in a room to reduce transmit power and hence inter-

cell interference between different APs (much like repeaters in today’s cellular

networks). [30] studies these antenna systems (as used in these other papers) from

the point of view of fading degradation due to incoherent signal combining.
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2.1.5 Other work

Some other areas peripherally related to our work here include: mesh networks

(where resource planning techniques are also reducible to graph coloring problems),

downlink scheduling in cellular CDMA networks [42], multi-class WLANs where

the problems looked at include transmission scheduling to take into consideration

different service requirements, smart antennas and directional antennas in ad hoc

networks [37], multi-radio systems [9] (where each user has multiple radios and

the challenge is scheduling between multiple channels), efficient AoA (Angle of

Arrival) and beamforming algorithms for ad hoc networks.

2.1.6 Discussion

While these numerous techniques do enable higher data rates at various frequency

bands, we note that none of them can do the same for the 60 GHz band due

to the peculiar features of this frequency. Thus, there are few or no multi-path

components at 60 GHz due to absorption by kost building materials. As a re-

sult, MIMO is a poor choice to obtain high data rates [32, 44]. For the same

reasons, MIMO/SDMA is also a poor choice and cannot ensure high data rates

since most reflected have a power that is several dB less than the direct transmis-

sion component. DAS is useful in order to ensure uniform propagation of a signal.

Unfortunately, it also increases the interference between distant users by repeating

the signal widely.

In this work, we utilize multiple smart antennas in a room to create multiple

mini-cells and then use SDMA to maximize the channel efficiency. Since 60 Ghz

signals do not propagate far or through most obstructions, we can ensure good

signal isolation to within cells, thus minimizing interference and maintaining high

data rates.
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Chapter 3

60GHZ PROPAGATION

In urban environments, signals propagate from a transmitter to a receiver via

multiple paths, each of which affects the received signal quality, see Figure 3.1. As

shown in the figure, there is a direct path for signals to travel from the AP to Bob

as well as a reflected path. The direct path is commonly referred to as Line of

Sight (LoS) while reflected and other indirect paths are called multipath. Alice is

hidden behind a wall but the signals may travel to her by going through the walls.

In this case the received signal strength will be smaller due to absorption by the

wall material. Finally, Charlie is behind a wall but near the corner. The signal

bends around the edge of the wall and reaches him via a diffracted path.

Access Point

Alice

Bob

Charlie

Line of Sight

Re!ected

Di"racted

Transmission

through

Figure 3.1: Illustration of indoor propagation.

A key factor in determining the achievable data rates is the SINR (Signal to
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Interference and Noise Ratio) of the received signal. In the absence of any obstacles

(like in outer space), the signal strength density degrades as a factor of distance2

(imagine the signal energy exists on the surface of an expanding sphere whose

radius is the distance between the transmitter and receiver). This is called free

space propagation and the number 2 is called the path loss exponent. In urban

environments, LoS paths mimic free space propagation with similar exponents.

Therefore, in our example, the LoS path to Bob will see signal strength that

degrades as square of the distance to the AP. However, reflected signals, diffracted

signals, and signals transmitted through materials, see far greater loss in energy as

they propagate, with exponents of 3 or 4 being quite common. If signals propagate

far via multipath then we may see interference as well from distant transmitters.

This further serves to weaken the SINR and hence lower the data rate. Finally,

signal quality can also degrade due to ISI (Inter Symbol Interference). ISI occurs

when the reflected component of the previous symbol arrives at the same time

as the LoS component of the current symbol. Thus, the previous symbol acts as

interference for the current symbol. In order to determine how to achieve high

data rates at 60 GHz, it is necessary to first understand the propagation behavior

of signals at this frequency.

3.1 SURVEY OF MEASUREMENT STUDIES

The propagation characteristics of 60 GHz have been studied by several authors [46,

2, 11, 28] who have noted its ray-like propagation properties which can be modeled

as free space propagation with a measured path loss exponent of 2.1. In [29, 11, 15,

10], studies have shown that this frequency band has lack of significant multipath

due to absorption, greater signal diffusion (i.e., less specular reflection) and lack

of diffraction around obstacles. Furthermore [40, 46] note the small RMS (Root
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Mean Square) delay spread for 60GHz indicating little multipath. The authors

measured the relative strength of the reflected components with respect to the

LoS component. The first-order reflections in typical indoor environments (from

windows) were almost 10 dB below the LoS path. If the surface is not polished, then

the reflected component is much weaker. Second-order and higher-order reflections

are highly attenuated and negligible. The penetration losses are also severe with

many building materials such as concrete causing a 35 dB reduction in signal

strength. LoS paths, as a result, are the predominant signal. The characteristics of

this propagation model makes it ideal for spatial reuse due to lack of interference

from other simultaneous separated transmitters [29]. In addition, using highly

directional antennas will therefore yield high throughput.

Spatial Division Multi Access, SDMA divides space into multiple cells. By using

different frequencies in neighbouring cells, the interference can be reduced resulting

in good signal to interference and noise ratio, SINR. SDMA has been studied

over the past decade and numerous algorithms have been developed. However,

all previous work looks at a much lower frequency (2-5GHz) where multipath

components are significant. Thus, a great deal of previous work [36, 45, 18] develops

MIMO/SDMA algorithms to identify the strongest multipath components in a

room and combine them to achieve high data rates. In our system, since multipath

is negligible, these previous algorithms are not applicable.

In terms of the channel, as noted by [40, 31] and others, OFDM (Orthogonal

Frequency Division Multiplexing) is a good choice because it partitions a highly

frequency selective wideband channel into nonselective narrowband channels. How-

ever, [40] notes that a drawback of this frequency is the relatively severe Doppler

spread (1200 Hz) even at walking speeds. This puts a minimum lower bound of at

least 30 Kilo-symbols/sec per carrier in the OFDM set.
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3.2 DISCUSSION

The primary conclusion from all of these measurement studies is that 60 GHz

WLANs need to be designed in a way that ensures the existence of a LoS path

between the AP and users. Transmissions through materials, even office parti-

tions, degrade the signal severely resulting in very low data rates. While this is a

problem in the sense that we need to deploy more APs (or antennas), the benefit

is the ease of spatial reuse of spectrum. Thus, the same frequency bands can be

used in adjacent rooms with little fear of interference thus considerably boosting

achievable data rates. Finally, we note that while most reflected components are

highly attenuated, reflections off glass are an exception. We use this observation to

create reflected paths to users who lack a LoS to the AP thus extending coverage

(particularly in the presence of unintended obstacles to the LoS path).
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Perpendicular Polarisation R R R R R R R R T

Material(thickness d [cm]; -dB -dB -dB -dB -dB -dB -dB Profile -dB

estimated roughness σh [mm]) (10◦) (20◦) (30◦) (40◦) (50◦) (60◦) (70◦) Type (0◦)

Aerated Concrete (5;0.2) 14.1 13.4 12.7 11.0 9.6 7.5 5.1 F 18.9

Concrete (5,0.1) 7.5 7.2 6.7 6.2 5.3 4.1 2.0 F ≥ 30.0

Brick (11; micro 0.3, macro 2) 14.8 12.7 13.4 17.5 12.3 8.6 4.8 M 16.9

Tiles (0.5;0.1) 4.1 3.8 4.1 3.8 5.8 7.6 2.1 M ≥ 30.0

Plasterboard (1.4:0) 14.1 14.1 8.3 5.5 9.8 5.1 1.2 M 2.8

Plasterboard(1;0) 23.8 17.9 8.1 4.5 4.5 8.9 6.9 M 2.1

Plasterboard rough (1;1.7) ≥ 30.0 ≥ 30.0 ≥ 30.0 ≥ 30.0 ≥ 30.0 ≥ 30.0 16.9 M ≥ 30.0

Plasterboard rough (1;1.2) ≥ 30.0 ≥ 30.0 ≥ 30.0 ≥ 30.0 ≥ 30.0 23.8 12.1 M ≥ 30.0

Plasterboard rough (1;1) ≥ 30.0 ≥ 30.0 ≥ 30.0 ≥ 30.0 23.1 14.6 6.9 M ≥ 30.0

Plasterboard smooth(1;0.25) 6.9 6.2 6.9 7.2 6.9 5.0 1.4 M 4.5

Wood Fibreboard (1.2;0.2) 21.0 27.2 15.8 15.5 12.7 10.7 5.5 M 3.4

Hard Fibreboard (0.4;0) 17.9 16.9 14.8 10.7 7.4 4.3 0.7 M 3.4

Wooden Panels (1.9;0) 22.0 21.7 18.4 18.2 15.2 9.3 6.5 M 8.6

Wooded Panels (1.2;0) 16.4 15.8 15.7 14.5 11.9 8.9 4.8 M 7.6

Wooden Chipboard (1.3;0.2) 13.4 10.7 9.5 11.7 7.9 5.5 5.3 M 6.2

Wooden Chipboard(1.6;0) 10.0 10.0 11.4 8.2 7.9 6.2 3.9 M 8.3

Acrylic Glass(0.4;0) 6.2 5.5 5.5 5.5 6.0 7.6 13.1 M 1.7

Glass metalized(0.4) 8.9 4.5 3.1 3.1 2.7 2.7 1.05 M ≥ 30.0

Table 3.1: Reflectivity R and transitivity T [27].
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Chapter 4

ANTENNA AND SMART ANTENNA

An antenna converts electrical currents into electromagnetic waves at the trans-

mitter and this process is reversed at the receiver. As a consequence, the received

signal strength in a communication channel is very dependent on the nature of

the antennas being used. The simplest (theoretical) antenna is modeled as a point

source which emits electromagnetic waves uniformly over the surface of a sphere

and is called an isotropic antenna. Therefore, the signal strength at some distance

d can be written as,

Pr = Pt ×GtGr

λ

4πd2

here Pt is the transmitted power and Pr is the received power at distance d. Gt and

Gr are the transmitter and receiver antenna gains, respectively. For an isotropic

antenna, the gain is 1 and thus the antenna gain of any antenna is written relative

to the gain of an isotropic antenna. If the antenna gain of an antenna is greater

than 1 then we call that a directional antenna. In effect, such an antenna selectively

directs the energy in some directions. As an example consider Figure 4.1 where the

transmitter antenna focuses most of its energy in the two lobes shown and Gb
t >>

Ga
t (these two quantities denote the transmitter antenna gain in the direction of

receivers b and a respectively). As a result, the signal strength received by b will

be much greater than the signal strength received at a.

In the context of 60 GHz WLANs, given the severe attenuation suffered, it

is necessary to use directional transmissions to maximize signal strength at the
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a

b

Figure 4.1: Example of directional transmission.

receiver. This will ensure high data rates while simultaneously minimizing the

interference at other receivers due to focussed transmissions. In general, there are

two ways to build a directional antenna. One way is to carefully place multiple

antenna elements and reflectors to provide high gain in some direction(s). The

other way is to use an antenna array consisting of multiple antenna elements and

then provide directivity by carefully combining signals received (or transmitted)

along each element. The signals from each antenna element may be amplified dif-

ferently prior to combining and may even be phase shifted to obtain specific beam

shapes. The benefit of the latter types of antennas (also called Smart Antennas) is

that the direction of transmission can be changed as a user moves about the room.

The beam is moved by changing the amplification and phase of the signals re-

ceived/transmitted along each of the array elements. Since we are concerned with

providing high data rate channels to users in indoor spaces, this ability to change

direction of communication is important. In this thesis we consider two specific

topologies (linear and circular) for arranging the antenna elements to obtain dif-

ferent types of beam shapes (and hence directivity) and study how we can share
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the channel among users in the room to maximize the throughput as measured in

bits/Hz.

4.1 SMART ANTENNAS

Smart antennas give us the ability to form directional beams in any direction, null

some number of interfering signals, and enable the detection of transmitters by

applying algorithms to determine the direction of arrival. Physically, smart an-

tennas consist of multiple antenna elements arranged in some geometry (popular

geometries include linear, circular, and rectangular). The output from each an-

tenna element is fed to a beamforming module that is responsible for beamforming,

nulling and direction of arrival computations. There can be multiple beamform-

ing modules, all attached to the same physical antenna elements. This gives us

the capability to form multiple beams in different directions and/or use multiple

frequency channels over the same antenna. Of course, each beamforming module

connects to a separate RF chain for transmit and receive functions. Additionally,

beamforming modules may either be implemented as analog components (lacking

flexibility) or digital. In the digital case, the beamforming modules come after

the analog-to-digital converter on the receiver side and before the digital-to-analog

converter on the transmit side.

Since an antenna array has multiple elements, a signal arriving from a distant

transmitter will arrive at slightly different times at each element. This manifests

itself as a phase shift between the signals received by different antenna elements

allowing for direction of arrival computation. For communication, beamforming

at a receiver is done by taking signals received by each antenna element, phase

shifting them appropriately and then coherently summing them. At a transmitter,

the reverse is done where the signal fed to each antenna element is appropriately
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phase shifted to form a beam in some direction.

Figure 4.2 shows a 2 element linear array. Each element is an isotropic antenna

(each direction has the same gain = 1). Each element is separated by distance d.

Assume that the signal arrives from angle θ. Given sufficient separation between

the transmitter and receiver, the signal hitting each element of the antenna can be

assumed to travel parallel paths.

-d/2 d/20

r1 r2r

O

O
d

2
sin

2 Elements
Linear Array

Figure 4.2: Linear array with 2 elements

The antenna gain of a linear antenna array with M elements is computed as

follows. We calculate the array factor (AF) using the expression below [17],

AF =

M
∑

i=1

ej(i−1)κd(sin θ−sin θ0) (4.1)

where κ = 2π/λ and d is the antenna element spacing. θ0 is the angle at which

we are forming the main beam and θ is the angle at which we are computing the

array factor. The gain in any direction is then computed as,

E
4πU(θ, φ)

∫ 2π

0

∫ π

0
U(θ, φ) sin θdθdφ

(4.2)

where E is the efficiency (that we assume is 1 in this thesis). θ and φ are measured

as shown in Figure 4.3 and U is the radiation intensity derived from the AF [17].
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Figure 4.3: 3D angle convention used.

In a similar fashion, the array factor for a circular antenna array with M elements

when beamforming in a direction (φ0, θ0) is [17],

AF =

M
∑

i=1

e−j(κa(sin θ cos(φ−φi)−sin θ0 cos(φ0−φi))) (4.3)

where we again measure the angles as shown in Figure 4.3. Gain is computed by

using equation 4.2. Figure 4.4 shows beam patterns at different angles using 4

and 8 element linear arrays. More number of elements are used to form narrower

beams.

Finally, we note that by multiplying each term in the sum in equations 4.1 and

4.3 by a complex weight wi (this can be thought of as amplification) we can shape

the beam differently (without changing the direction) or add nulls (section 4.1.2).

4.1.1 Beam Patterns – Linear and Circular Antenna Arrays

Consider a linear antenna array where the antenna is in the ceiling of a room

aligned along the y-axis. The beam formed by this type of an array exhibits a

circular symmetry along the main antenna axis. Figure 4.5 shows the gain in dBi

when the beam is formed towards a user located at coordinates (1.5m, 1.5m, 0.5m).
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(a) 4 elements 20 degree (d) 8 elements 20 degree
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(b) 60 degree (e) 60 degree
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(c) 90 degree (f) 90 degree

Figure 4.4: Beamforming at 20, 60 and 90 degrees using 4 and 8 element linear

array
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As we can see, the beam covers a large area and is in fact given by the intersection

of the x-y plane of the room with the cone whose axis coincides with that of the

array and whose angle at the intersection (projected to two dimensions) is 2θ. θ

is the angle formed by the intersection of the line connecting the user location

to the center of the antenna axis and the antenna axis itself. The implication of

this type of beam is that all users located within the same θ of the AP will be

spatially inseparable and will therefore have to share the channel using TDMA or

other protocols. If we now form a beam using a circular array to the same user

located at (1.5m, 1.5m, 0.5m), the gain we see in the room is shown in Figure 4.6.

Unlike the linear case, the beam appears to be more focused in this case. Observe

the side-lobes in the figures – these are regions where there will be interference.

Also, the beam width of the main beam represents the 3dB region (i.e., the signal

strength at the boundary is half that of the energy at the boresight).

4.1.2 Nulling

An additional benefit of using smart antennas is the ability to form up toM−1 nulls

when the antenna has M elements. Nulls are formed by appropriately weighting

the elements of the array factor from equations 4.1, 4.3. Let us assume that we are

beamforming at angle θ0 and nulling angles θ1, · · · , θp. We can write the following

set of linear equations for the linear antenna array:

∑M

i=1wie
j(i−1)κd sin θ0 = 1

∑M
i=1wie

j(i−1)κd sin θ1 = 0

.

.
∑M

i=1wie
j(i−1)κd sin θp = 0
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Figure 4.5: Gain with 20-element linear array pointing to (1.5m,1.5m,0.5m) and

the axis of the antenna aligned along the y-axis.

Here, each equation describes the desired output of the antenna for the different

directions. By solving these equations for wi, we can beamform towards θ0 and

null the remaining p angles. The criterion used is maximizing SIR (Signal to

Interference Ratio) [17]. In matrix form, we can write the above set of equations

as wH .A = [1, 0, · · · , 0]T where H denotes the Hermitian and A is the matrix of

array factors. If p = M − 1, the above system can be solved in matrix form as:

wH = [1, 0, · · · , 0]T .A−1 (4.4)
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Figure 4.6: Gain with a 20-element circular array pointing to (1.5m,1.5m,0.5m).

Otherwise, if p < M − 1 we use an approximation [13] where we make the matrix

A square by adding noise terms. The weights are then found as:

wH = [1, 0, · · · , 0]T .AH .(A.AH + σ2I)−1 (4.5)

where σ2 is the noise variance.

4.1.3 Access Point Model Used

In this thesis we assume that an AP is equipped with either a linear antenna array

or with a circular antenna array. The element spacing is λ/2 = 2.5cm. The length
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of a 20 element linear array is thus 47.5cm while the diameter of the circular array

with 20 elements is 50/πcm.

Each AP may have one or more beamforming modules (also simply called

modules in the text). Each module is capable of forming a beam in a preferred

direction and forming up to 19 nulls (with 20 elements). It is noteworthy that each

module will have its own associated RF chain (including amplifiers, demodulators,

filters, etc.). Thus, if an AP has M modules then it will also have M RF chains

and can communicate in M directions simultaneously.

4.2 DISCUSSION

The beam shapes produced by linear and circular antenna arrays intersect the

room’s floor in different ways. Thus, the linear array forms a beam whose coverage

area is a strip across the room while the circular array results in more conical

coverage areas. The next question we address is how to perform resource allocation

in the room for each of these antenna topologies to maximize data rates. For

instance, users located in the same strip will interfere with each other and thus

need to share the channel using some MAC protocol like TDMA or CSMA. On the

other hand, users located in alternating strips can reuse the same channels since

the interference between them will be very small. We consider each of these novel

characteristics of smart antennas in the context of 60 GHz propagation next and

develop very efficient resource allocation algorithms.
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Chapter 5

ACCESS POINT PLACEMENT STUDY

Antenna placement is an important issue for 60GHz wireless networking. Because

of the properties of the 60GHz spectrum, there is little or no signal coverage when

obstructions block the signal path. This is unlike the 2.4GHz and 5GHz spec-

trum, where it is easy to have 100% coverage because signals can pass through

obstructions and walls. Therefore, we investigate the question of antenna place-

ment with the goal of providing full coverage for the 60GHz spectrum. In this

chapter, algorithms are proposed as well as a proof of optimal antenna placement

with minimum number of antennas is provided.

The optimal solution for full coverage in the absence of obstructions is simple.

We can place one antenna anywhere at a reasonable height, higher than any receiver

antenna. However, the challenge comes when there are obstructions present.

Obstructions can be of any shape. However, obstructions usually are of a

rectangular shape in office and home environments. To simplify our analysis, we

first assume that obstructions are rectangles (similar to partitions in offices) with

no thickness. The assumption of zero thickness is reasonable because there is a

small amount of diffraction of the signal around sharp corners of the obstruction

effectively allowing us to ignore the thickness of most partitions. We develop a

antenna placement algorithm for rooms containing partition-like obstructions. We

then study the case when obstructions have significant thickness which means that

diffraction alone cannot cover shadow areas. This problem has some similarity to
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the problem of camera placement for surveillance. However, our problem is simpler

since we are only interested in line of sight coverage of all areas whereas camera

placement has to do with identification and tracking of people.

5.1 OBSTRUCTIONS WITHOUT THICKNESS

For rectangular obstruction without thickness, we can imagine it is a straight line

in a top down view of the room. It is easy to see that each such line (extended to

the walls of the room) divides the room into two sub-areas. The first placement al-

gorithm then is to place one antenna in each sub-area. Observe that each partition

is a convex hull and therefore every point inside is visible from a central location.

However, we can do better than using two antennas, one for each partition. For

example, if we place one antenna on the top of the obstruction, it can still provide

full coverage in the room.

Lemma 1. For a single zero-thickness rectangular obstruction, the best antenna

placement is on the top of the obstruction for full (100%) coverage.

Proof. Consider one obstruction in a two dimensional space as shown in figure 5.1.

The circle represents the antenna location. Let x be the distance between the

antenna and the obstruction. Let ha be the antenna height (this is the height from

the ceiling to the floor) and ho is the height of the obstruction. The triangular

area shows the shadow caused by the obstruction which is the region of no signal

coverage for this antenna placement.

Now we can use a simple calculation to find out the relation between x and the

area without coverage.
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x

ha

ho

Figure 5.1: Relation between distance from antenna to obstruction and coverage

area without signal =
h2
o × x

2(ha − ho)
(5.1)

= k × x (5.2)

In equation 5.2, k = h2
o

2(ha−ho)
. We want to find the minimum value of the

area without signal. For full coverage, area without signal = 0. Since ha >

ho > 0, k > 0. Therefore, to obtain yields area without signal = 0, we need

x = 0. This proves the lemma.

An interesting observation we can make based on the above lemma is that

the antenna can be placed anywhere on top of the obstruction and still provide

complete coverage. Indeed, an antenna placed anywhere along the line extending

the obstruction in either direction will also provide complete coverage, as shown

in Figure 5.2. Note that in the figure we are seeing a top view of the obstruction.

This leads us to the following corollary.

Corollary 2. A single antenna placed at the intersection of two obstructions will

provide complete coverage. If the obstructions do not intersect, an antenna placed

at the intersection of the lines extending the obstructions in either direction will

also provide complete coverage.
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O
bst

ru
ctio

n

Antenna placed anywhere

along this line will provide

complete coverage

Figure 5.2: Generalization of Corollary 1.

Proof. Let us assume that the two obstructions are O1 and O2 and are not parallel

to each other, as shown in Figure 5.3. By Lemma 1, placing an antenna anywhere

along O1 or along the line extending O1 will provide complete coverage if O1 is the

only obstruction present. Similarly, if O2 is the only obstruction present, complete

coverage is provided by placing an antenna anywhere along the line extending O2.

Therefore, if we place the antenna at the intersection of these two obstructions,

then that point satisfies the criteria for coverage for each of O1 and O2.

It follows from the corollary that if the two obstructions are parallel, then two

antennas are required. Furthermore, if we also consider the walls of the room as

obstructions then, if the point of intersection of two internal partitions lies outside

the room, then we also need two antennas. This follows from the corollary by

extending each obstruction to the walls and then placing an antenna at each of the

two intersections. Using the corollary, we now have the following theorem.

Theorem3. If n rectangular obstructions are placed in a room, we can provide

100% coverage using no more than n antennas. In particular:

1. If none of the n obstructions intersect when extended within the room, then

we require exactly n antennas.
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O1

O2

Placing antenna at
intersection provides
complete coverage

Figure 5.3: Antenna placement for two non-parallel obstructions.

2. If m of the obstructions intersect within the room (when extended), then we

need no more than n−m+k antennas where k < m is the number of subsets

of m where each subset consists of partitions that meet at a single point when

extended and all subsets have a null intersection with each other.

Proof. The proof of (1) follows immediately from Lemma 1. For (2) take the

m obstructions and extend them (staying in the room) till they meet another

obstruction(s). Figure 5.3 shows this for the case when two obstructions meet at

a point in the room. Next, form subsets of obstructions where obstructions that

meet at a point are placed in the same subset. Further, after an obstruction is

included in a subset, it can no longer be placed in another subset. For example,

if O1 and O2 meet at a point and so do O2 and O3 (at a different point), we can

form subsets {{O1, O2}, {O3}} or {{O1}, {O2, O3}}. Assume that we form k such

subsets. Then, from Corollary 1, placing one antenna at each of the k identified
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intersections along with n−m antennas placed atop each of the other obstructions

will provide complete coverage in the room.

We must reiterate that if the point of intersection lies outside a room, then we

need two antennas for two obstructions each placed atop each of the obstructions.

Similarly, if the obstructions are parallel, then we will also need two antennas.

Now that we know that the best antenna placement for pairs of obstructions

is at their intersection, we can develop an algorithm for antenna placement in a

room with arbitrary collection of obstructions. Consider the two example rooms

shown in Figure 5.4(a)(b) to demonstrate the methodology proposed.

(a) (b)

1 2 3

4 5 6 7 8

9 10 11 12

1

2

3

4

5

6

7
8

9

10

11 12 13

(c) (d)

Figure 5.4: (a,b) Two different rooms with different locations for obstructions.

(c,d) Extend the line on both sides of the obstructions
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The first step is to extend both sides of the obstructions, which is shown as

dotted lines in Figure 5.4(c)(d). When the lines hit the wall or any other obstruc-

tion, it stops. This process is used to identify all the possible intersections and

the various sub-areas that are created. Let us represent each of the sub-areas in

the room using a simple matrix representation. For example, figure 5.4 (c) has 12

sub-areas in total. We can create a three by four matrix to represent the entire

room. Our goal is to determine the fewest antenna placements that will provide

coverage in the entire room. Equivalently, we want to find the fewest number of

antennas that can collectively cover all the identified sub-areas.

5.1.1 Exhaustive Search Algorithm

1 2 3 4 5 6
1

2

3

4

5

1 2 3 4 5 6
1

2

3

4

5

(a) (b) (c)

Figure 5.5: An office room space with 8 cubicles at four corner

In this section we provide an algorithm for finding the antenna placements for

arbitrary rooms. As an illustrative example, we will use the room depicted in

Figure 5.5 (a). Following the previously outlined procedure, we first obtain the set

of all possible antenna placements which correspond to the intersections as in figure

5.5 (c). This process also splits the room into sub-areas that can be represented

using a 5 × 4 matrix for our example. For each antenna placement we create

one coverage matrix. Thus, for our example, since there are 30 possible antenna
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placements (indicated by the circles), we get 30 coverage matrices. Initialize each

of the matrix entries of each matrix to 0 indicating no coverage. Let aij be the

coverage matrix corresponding to antenna placement (i, j). If placing an antenna

at this position provides full coverage for some sub-area, we place a 1 in that

position in the matrix aij . For example, consider matrix a23 corresponding to

figure 5.5. By placing an antenna at location (2, 3), we can cover subareas shown

in figure 5.6 and the corresponding matrix is shown below. Note that the sub-area

between antenna positions (3, 1) and (4, 1) is partially covered by placing the AP

at (2, 3). Therefore, the entry for this area is zero in the coverage matrix a23.

1 2 3 4 5 6
1

2

3

4

5

Figure 5.6: Example of antenna a23 coverage area

The coverage matrices for all possible antenna placements are:

33



www.manaraa.com

a11 =

















0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

















; a21 =

















0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 1 0 0 0

















; a31 =

















0 0 1 0 0

0 0 1 0 0

0 0 1 0 0

0 1 1 0 0

















;

a41 =

















0 0 1 0 0

0 0 1 0 0

0 0 1 0 0

0 0 1 1 0

















; a51 =

















0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 1 1

















; a61 =

















0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

















;

a12 =

















0 0 0 0 0

0 0 0 0 0

1 1 1 1 1

1 0 0 0 0

















; a22 =

















0 0 0 0 0

0 0 0 0 0

1 1 1 1 1

1 1 0 0 0

















; a32 =

















0 0 1 0 0

0 0 1 0 0

1 1 1 1 1

0 1 1 0 0

















;

a42 =

















0 0 1 0 0

0 0 1 0 0

1 1 1 1 1

0 0 1 1 0

















; a52 =

















0 0 0 0 0

0 0 0 0 0

1 1 1 1 1

0 0 0 1 1

















; a62 =

















0 0 0 0 0

0 0 0 0 0

1 1 1 1 1

0 0 0 0 1

















;

a13 =

















0 0 0 0 0

1 1 0 0 0

1 1 1 1 1

0 0 0 0 0

















; a23 =

















0 0 0 0 0

1 1 0 0 0

1 1 1 1 1

0 0 0 0 0

















; a33 =

















0 0 1 0 0

1 1 1 0 0

1 1 1 1 1

0 0 1 0 0

















;

a43 =

















0 0 1 0 0

0 0 1 1 1

1 1 1 1 1

0 0 1 0 0

















; a53 =

















0 0 0 0 0

0 0 0 1 1

1 1 1 1 1

0 0 0 0 0

















; a63 =

















0 0 0 0 0

0 0 0 1 1

1 1 1 1 1

0 0 0 0 0

















;
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a14 =

















1 1 0 0 0

1 1 0 0 0

0 0 0 0 0

0 0 0 0 0

















; a24 =

















1 1 0 0 0

1 1 0 0 0

0 0 0 0 0

0 0 0 0 0

















; a34 =

















1 1 1 0 0

1 1 1 0 0

0 0 1 0 0

0 0 1 0 0

















;

a44 =

















0 0 1 1 1

0 0 1 1 1

0 0 1 0 0

0 0 1 0 0

















; a54 =

















0 0 0 1 1

0 0 0 1 1

0 0 0 0 0

0 0 0 0 0

















; a64 =

















0 0 0 1 1

0 0 0 1 1

0 0 0 0 0

0 0 0 0 0

















;

a15 =

















1 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

















; a25 =

















1 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

















; a35 =

















1 1 1 0 0

0 0 1 0 0

0 0 1 0 0

0 0 1 0 0

















;

a45 =

















0 0 1 1 1

0 0 1 0 0

0 0 1 0 0

0 0 1 0 0

















; a55 =

















0 0 0 1 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

















; a65 =

















0 0 0 1 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

















;

Lemma 4. Let A and B denote sets of sub-areas that are covered with different

antenna placements. Then, if A ⊂ B, we can eliminate A because B can cover all

the positions A covers.

This proposition follows from the definition of subset. Further, by the transitive

property, if A ⊂ B and B ⊂ C, A ⊂ C.

Lemma 5. if A = B, then we can either eliminate A or B.

In our example from figure 5.5, a11 ⊂ a21 since placing an antenna at posi-

tion (2, 1) covers all the areas covered by an antenna at position (1, 1), and more.
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Therefore, in determining the minimal antennas needed, we can start by eliminat-

ing position (1, 1) from consideration. By a similar argument, we are eventually

left with only seven antenna placements a22, a32, a42, a52, a43, a34, a44 from which we

need to find the fewest that can provide 100% coverage.

Given k such matrices, we need to find the fewest l that can provide complete

coverage. The naive algorithm is to search through all subsets of k matrices and

identify the smallest subset that satisfies the coverage requirement. In other words,

we need to look at all





k

1



 sets, then at all





k

2



 sets, and so forth. While

this process will identify the smallest set of antenna placements, its complexity can

be easily seen to be O(2k).

5.1.2 Greedy Algorithm

Consider a more efficient algorithm for finding antenna placements. We start with

the same process as above to eliminate redundant matrices. As noted above, for

our example, this gives us matrices, a22,a32,a42,a52,a43,a34,a44. The first step is to

find the sum of these remaining matrices,

R0 =
∑

aij =

















1 1 6 1 1

2 2 6 2 2

6 6 8 6 6

1 2 6 2 1

















We now look at the value 1 in R0, find the corresponding aij matrix (note:

there will be exactly one matrix which has that value of 1). For example, if we

look at the position(1,4) which is the left top corner value, a34 was found. We keep

a34 in our list of antenna positions that are required for full coverage and then we

subtract a34 from R0:
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R1 = R0 − R0 ⊗ a34 =

















0 0 0 1 1

0 0 0 2 2

6 6 0 6 6

1 2 0 2 1

















Define ⊗ operation as follows:

A =





a1 a2

a3 a4



 ;B =





b1 b2

b3 b4



 ;

A⊗ B =





a1× b1 a2× b2

a3× b3 a4× b4





We repeat the process and choose another value of 1. Let’s pick position(1,1)

which is the left bottom corner value. a22 is found.

R2 = R1 − R1 ⊗ a22 =

















0 0 0 1 1

0 0 0 2 2

0 0 0 0 0

0 0 0 2 1

















We repeat the same process and find a44 and a52. The resultant matrix becomes:

R3 = R2 − R2⊗ a44 =

















0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 2 1
















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R4 = R3 − R3⊗ a52 =

















0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

















When the matrix becomes all zeros, it means that all sub-areas are covered by

at least one antenna. In this example, the final chosen antenna positions are a34,

a22, a44, and a52 which is shown in figure 5.7.

1 2 3 4 5 6
1

2

3

4

5

Figure 5.7: Antenna position found

This algorithm works well when the sum matrix R has a lot of one’s and a

variety of large and small numbers. Now let’s consider a case when the sum matrix

R has no one’s or the above process stops at a stage that all one’s are found and

the remaining numbers are greater than or equal to two. At this point, we need to

create a tree consisting of all the possible combinations by starting at the lowest

number in the sum matrix. Here is an example to explain the algorithm and how

to build the tree.

Let the coverage matrices be:
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a11 =











1 1 1

0 0 1

1 0 0











; a12 =











1 0 1

1 0 0

0 0 0











; a13 =











1 1 1

0 0 1

0 1 1











;

a21 =











0 0 0

1 1 0

0 1 0











; a22 =











0 0 0

1 0 0

1 1 1











; a23 =











1 1 1

0 1 0

0 1 0











;

R0 =











4 3 4

3 2 2

2 4 2











Name the array positions of R0 as follows for ease of explanation:

R0 =











e1 e2 e3

e4 e5 e6

e7 e8 e9











Let S(i) be a set which contains all the positions of the sum matrix which has

value i. Thus, s(2) = e5, e6, e7, e9. The algorithm is as follows:

1. Set i = 1.

2. Check if S(i) is an empty set. If yes, increment i. If no, go to the next step.

3. Start from the first element in the set S(i).

4. Look up the matrix pool and there will be exactly i matrices that have value

of 1 in the corresponding position.

5. Sum the matrix with the parent matrix. If the parent is root, then the

resulting matrix is itself. If the resulting matrix is all one’s, the algorithm
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terminates. The path from the root to the leaf corresponds to the required

antenna placements.

6. Otherwise, pick the next element from S(i) if it is not empty. If it is empty,

increment i and go to step 2.

7. Check if the position is already covered in the resulting matrix, if yes, do

nothing. Otherwise, go to step 4.

Here is an example to work through the algorithm. The minimum number of

R0 is 2 and S(2) = {e5, e6, e7, e9} Figure 5.8 shows the example tree structure.

It starts with e5 (the first element in S(2)). Then we look up the matrices to see

which two matrices have value of 1 in the e5 position. a21 and a23 are found. The

square on the side of the node indicates the matrices where dark spot is 1 and

white is 0. Since the parent is root, we go to the next element in S(2) which is

e6. We check both node a21 and a23 if position e6 has value of 1. However, both

are zero. We need to look up which matrices have value of 1 in position of e6.

a11 and a13 are found. We sum a21 and a11 and, the resulting matrix is shown

at the bottom of the node a11. Likewise, we repeat and sum for the rest of other

nodes. The next element in S(2) is e7. However, all the resulting matrices show

value 1 in position e7. Therefore, we take the last element in S(2) which is e9. We

again look up the matrix pool and find a13 and a22 have value of 1 at position e9.

We sum the parent node with the current node and the result is all one’s in three

cases. Therefore, the optimal solution is not unique. The three choices are:

• a21, a11, a13; or

• a21, a11, a22; or

• a23, a11, a22
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In this example, we have already found the solution to 100% coverage before

we even got to go the the next set S(3). If at the end of set S(2), we still do not

have all one’s in the leaf matrices, we will need to go to the next set which is S(3).

And repeat the algorithm until a solution is found.

e5

e6

e7

e9

a21 a23

a11 a13

e7 e7 e7

e9 e9 e9

e6

a11 a13

a13 a22 a13 a22

Figure 5.8: e5,e6,e7,e9 tree

Algorithmic Complexity and Optimality

The above greedy algorithm can be easily be seen to be optimal as follows. The

first step of the algorithm selects those antennas that contribute to covering sub-

areas that can only be covered by that antenna (the 1’s in matrix R0). Therefore,
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these antennas have to belong to the optimal solution. The next step involves an

exhaustive search as in Figure 5.8. Since this is an exhaustive breadth first search,

we will stop when we cover the entire room with the fewest number of antennas.

Hence the greedy algorithm is optimal.

Let n be the number of remaining matrices. m is the number of sub-areas (i.e.,

the matrix size, if it is a 3×3 matrix, m = 9). n = C×m where C > 1. We notice

that in this algorithm, when the fanout increases, the height of the tree decreases.

And the fanout is the number of values in the sum matrix and is less than n. The

worst case is when the fanout is n
2
. Then the complexity is (n

2
)
2m
n

+1 − 1. Since

n = Cm, the complexity can be rewritten as (n
2
)

2

C
+1 − 1 = O(n3).

5.2 RECTANGULAR OBSTRUCTIONS WITH THICKNESS

Antenna

wo

ha

ho

area without

signal

Figure 5.9: Rectangular obstruction with thickness wo and height ho

If the obstruction has significant thickness, placing the antenna at the top of

the obstruction will not give full coverage any more. For instance, as illustrated in

Figure 5.9 when the antenna is placed at height ha above a wall of thickness w0 and

height h0, the wall’s thickness casts a shadow on either side of the wall to a distance

of w0h0

2(ha−h0)
. Thus, we can consider two alternative goals of antenna placement –
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one goal is to provide complete coverage as before or we can aim for coverage that

is almost complete. In the latter case, we may specify that the floor area not

covered should be within γ of the wall. In practical situations, the latter approach

is reasonable since, typically, the areas not covered lie immediately adjacent to

walls or partitions and are generally not where we expect to use wireless laptops

or other devices. Indeed, allowing some flexibility in coverage allows for simpler

antenna placements. For a given obstruction, we find the antenna height required

to satisfy the coverage goal is given by the inequality ha > h0(1 +
w0

2γ
). Using this

approximate approach, we can now determine antenna placements by putting one

antenna atop each wall at the appropriate height.

5.2.1 Achieving Complete Coverage

While providing almost complete coverage is a reasonable goal, it is interesting to

examine the question of what does it take to provide 100% coverage of the room

in the presence of arbitrary thick obstructions. The first approach for doing this

is a simple generalization of the algorithm presented in section 5.1.2. We think

of each rectangular obstruction (of non-zero thickness) to be actually four zero-

thickness rectangular obstructions. Then, we simply run the Greedy algorithm

from section 5.1.2 with one change in initial conditions – we place a 1 in each

matrix position that corresponds to the interior of any of the non zero-thickness

obstructions. This ensures that the algorithm does not try to provide coverage

“inside” an obstruction.

While the above approach does solve the problem, we note that the number of

antennas used can be as many as 2n. To see this note that by considering each

obstruction as four zero thickness obstructions we end up with 4n obstructions.

Using Theorem 1, we have m = 4n (i.e., every obstruction intersects at least one
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other obstruction) and we obtain k = 2n subsets. This is because each of the

four faces that form an obstruction yield two subsets (as per the construction in

Theorem 1). Thus, we require 4n− 4n + 2n = 2n antennas in all. We can get by

with fewer antennas as explained below.

Figure 5.10 shows a top view of a room with five rectangular obstructions

labeled R1, · · · , R5. As one can see, placing a single antenna anywhere in the

room will create several shadows from each of the walls. The problem can be

stated as determining the minimal number of antennas and antenna placements

such that the entire room has coverage.

R1
R2

R3

R4

R5

Figure 5.10: Room with five thick rectangular obstructions.

This problem is identical to a problem from Computer Vision called the The

Floodlight Illumination Problem. The challenge there is to illuminate every surface

of all the walls in a room in the museum using point sources of light. We note

that if we can illuminate every wall surface, then we simultaneously illuminate

every other part of the room since the shadow areas are always adjacent to walls.

Thus, the solution to the floodlight problem can be directly applied to our antenna

placement problem.
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R1
R2

R3

R4

R5

Figure 5.11: Maximal rectangles.

a

b

a

b a c b

a b

c b a

Figure 5.12: Reduction to graph coloring and then to antenna placement.

An early work [6] proves that for any room containing n isothetic rectangles,

complete illumination of all walls can be provided using no more than ⌊(4n +

4)/3⌋ light sources placed at specific locations determined by the solution to a

3-coloring problem. Using Figure 5.10 as an illustrative example, the first step

in the algorithm is to enclose each of the rectangular obstructions into maximal

rectangles as shown in Figure 5.11. This construction then naturally gives us a
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graphical representation (Figure 5.12) where each vertex of the graph corresponds

to a corner of Figure 5.11. Finally, obtain a 3-vertex coloring of this graph. Of

the three colors used, determine the most commonly used color. Then, place an

antenna at each vertex that was colored using either of the two other colors. In

Figure 5.12 we illustrate a 3-coloring using colors a, b, c. Since a is most commonly

used, we place an antenna at each position labeled by b and c giving us 7 antennas.

5.2.2 Generalizing to Other Obstructions

In general, an obstruction may come in any shape including polygons and curvi-

linear. The above algorithm can be easily extended to these cases as well by

converting the polygon into isothetic rectangles. For the case when the obstruc-

tion has curves, an approximate method would be to convert the smooth curve

into a serious of short rectangles and then apply the same algorithm.
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Chapter 6

ARCHITECTURE FOR 60GHZ DEPLOYMENTS: MULTIPLE

DISTRIBUTED ANTENNAS

In this chapter and the next, we study different architectures for 60GHz WLANs.

We explore two types of antennas placement: multiple distributed antenna archi-

tecture and multiple co-located antenna architecture. In the multiple distributed

antenna architecture, we use multiple antennas in different locations to increase

the coverage area. Each antenna may have multiple radio modules to support mul-

tiple simultaneous connections. In the multiple co-located antenna architecture,

there is only one antenna (usually at the center of the room) connected to multiple

antenna modules.

In the multiple distributed antenna architecture, we place the antennas using

the description in session 6.1 to maximize the LoS coverage of the room. Then, we

compare the cases when users are equipped with omni-directional antennas and di-

rectional antennas. In both cases, FDMA and TDMA are used for multiple access.

Spatial reuse is employed in addition to FDMA/TDMA in the directional case at

the user. Users equipped with directional antennas achieve 1-2Gbps/user data rate

while users equipped with omni-directional antennas only, achieve 500Mbps/user

on average when there are 10 users in the room.
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A

B

C

D

time 1

time 2

D

1

6

5

42

3

Figure 6.1: Multiple distributed smart antennas.

6.1 MULTIPLE DISTRIBUTED ANTENNAS

We study the key issue of providing coverage (ideally via LoS links) to users/devices

who may be anywhere in the room. Given obstructions like furniture , partitions,

other people, etc., as well as the unpredictable location of these obstructions,

the only way to provide LoS paths is to have multiple antennas in the room.

We therefore propose a spatially distributed version of a SDMA AP where the

room has multiple smart antennas spread out such that coverage can be provided

where needed. As a working example, consider Figure 6.1 where we have six

smart antennas deployed in the ceiling. Note that these antennas may be deployed

anywhere so long as coverage is provided. Figure 6.1 shows that not all users are

visible from all antennas. Thus, user B is only visible from antennas 5 and 6, user

A is only visible from antennas 3 and 4 whereas user C is visible from all antennas.

The figure shows another constraint of this frequency band. C’s LoS to antenna 1

is blocked by user D at time 2 (assuming D walks towards C, starting at time 1

and arriving at time 2). Thus, from the point of view of allocating links to users
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(equivalently allocating antennas to users), we need to ensure that (1) the user is

LoS and (2) the allocation may need to be changed dynamically as the demand

changes and as some links are lost or others get created by movement.

We assume that each ceiling-mounted antenna is a smart antenna that allows it

to beamform in any direction, place nulls in given directions to silence interferers or

to reduce interference at other receivers, and find the direction of arrival of signals.

This last capability is needed to track moving users as well as to find new users

when they enter the space. However, we will not exploit this last capability in this

thesis in order to keep a narrow focus on the resource allocation problem. While

we assume that the AP has smart antenna capability allowing it to beamform in

any direction, we do not make the same assumption for the user in this section (i.e.

user uses an omni-directional antenna). We will study the case when user carries

smart antenna in the next chapter.

6.2 RESOURCE ALLOCATION

The key problem addressed in this thesis is that of allocating resources to users such

that we can provide very high data rates. The resources in our architecture consist

of links between users and antennas as well as frequency channels (if multiple

channels are available). In order to clearly explain the challenge, we introduce

some notation first.

Let us assume that the room contains A smart antennas each with M beam-

forming modules. Each beamforming module is configured with array weights

that allow the formation of a beam towards one user and nulls towards oth-

ers. Thus, the signal received at the antenna elements are fed to each beam-

forming module in parallel which gives us M simultaneous channels for commu-

nication. Of course, the AP requires M radios to receive and transmit to M
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users simultaneously. Since each beamforming module is connected to one radio,

aij , i = 1, 2, · · · , A, j = 1, 2, · · · ,M denotes the jth module of antenna i. Note

that from one antenna we can support two downlinks to two users simultaneously

on the same channel so long as each user is separated in angular direction allowing

each beamforming module to point the main beam at its user and place a null

at the other user. However, user-to-user interference in uplink transmissions may

be high when users use omni-directional antennas. This interference is greatly

reduced with the use of upward pointing antennas.

We assume that there are FC ≥ 1 frequency channels available within the

room that can be allocated to different links. In the above example, if the user-to-

user interference is very high, we may well decide to allocate a separate frequency

channel to each user. Note that given the 5GHz bandwidth available in the 60GHz

ISM band, and the poor propagation of the signal between rooms, it is reasonable to

use multiple frequency channels simultaneously within each room. In this thesis we

assume that the frequency channels are static (i.e., all have the same bandwidth)

rather than dynamically defined (where channel bandwidth is defined based on

demand). We denote a given frequency channel by cl, l = 1, 2, · · · , C. Finally,

assume that there are N users uk, k = 1, · · · , N in all. An allocation is a set of

N tuples < uk, aij , cl > such that each of the N users has an assignment. Note

that multiple users may well be assigned to the same antenna/module/channel in

which case they will all need to share the link using some protocol – in this thesis

we assume TDMA.

Let us now consider some examples that better explain the constraints as well

as novel features of this architecture. In Figure 6.2 let us assume that FC = 1

and M = 1. Then, because the two users are spatially close to one another, we

assign them both to antenna a2 where they share the channel (the allocation is

{< u1, a21, c1 >,< u2, a21, c1 >}). On the other hand, if the users are separated

50



www.manaraa.com

a
2

u
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Figure 6.2: Two co-located users.

a
2

u
2u

1

a
1

LOS

1st
order
reflection

Figure 6.3: Two spatially separated users.

spatially as in Figure 6.3 then we can assign each to a different antenna albeit

using the same channel (the allocation is {< u1, a11, c1 >,< u2, a21, c1 >}). This

allocation will be reasonable if the interference between the two users (shown by the

LoS and the reflected path) is small enough that the SNIR exceeds some threshold

for uplink as well as downlink communication. Thus, if u1 is transmitting to

a1 while u2 is receiving from a2, u1’s signal will interfere at u2. Alternatively,

when u1 and u2 both transmit, the received signal at a1 from u1 will see some
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interference from u2’s transmission (and vice versa). Note that in Figure 6.3 if

the interference is great enough then we will have to use some form of TDMA to

separate communication between u1 − a1 and u2 − a2 in time. Alternatively, we

can assign both users to the same antenna and again use TDMA. Finally, observe

that if FC = 2 while M = 1, we can use the allocation shown in Figure 6.3 but

using both channels as: {< u1, a11, c1 >,< u2, a21, c2 >}. The same allocation can

also be used in Figure 6.2 since both users are visible from both antennas.

We define an optimal allocation as one which maximizes the total data rate

achieved in the cell. In Figure 6.2 with the allocation {< u1, a21, c1 >,< u2, a21, c1 >

}, we would compute the data rate under the assumption that the uplink as well

as downlink channel is shared using TDMA. Therefore, we compute the SNIR

at each user given TDMA and then determine the data rate we can achieve us-

ing appropriate modulation and coding for a given target BER (Bit Error Rate).

Likewise we compute the SNIR at the antenna for uplink transmissions and do

the same calculation. If rij,k denotes the downlink data rate at user uk from an-

tenna i module j (i.e., aij) and rk,ij the uplink data rate, then we calculate the

total data rate in the cell for this example as: P = (r21,1 + r21,2 + r1,21 + r2,21)/4.

Similarly, for the allocation {< u1, a11, c1 >,< u2, a21, c1 >}, the data rate is

Q = (r12,1 + r1,12)/2 + (r21,2 + r2,21)/2.

• In allocation P the channel is time shared and hence each directed commu-

nication gets one quarter of the channel. On the other hand, in allocation Q,

we have spatial reuse of the channel and thus we can have two simultaneous

transmissions ongoing at the same time. In other words, each of the two

spatial channels are shared by only two entities – antenna and one user.

• It may appear that the second allocation Q will have a higher data rate.

However this is not always true. Since there is only one frequency channel in
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the cell, there will be interference at each user as well as antenna that will

reduce the SNIR there by reducing the data rate. Indeed, in this situation it

may sometimes be better to run TDMA in the entire cell to improve overall

data rate.

u
2u

1

a
1

Option 1: Form
a wide beam to
include both users

Option 2: Form narrow
beams to one user at
a time and flip between
them

Flip

Figure 6.4: Flipping between separated users.

Consider one final example in Figure 6.4 where we have only one antenna

with one module and two spatially separated users. The only allocation here is

{< u1, a11, c1 >,< u2, a11, c1 >}. Since both users share the channel, we assume

TDMA is used. Even with this allocation, we note that there are two possible data

rates achievable. In the first case, we form a wide beam to accommodate both

users (bold line in the figure). In this case, the transmitter’s power is spread over

a wider area resulting in lower SNIR. In the second case, we form a narrow beam

towards the user who is presently communicating (by beamforming only to that

user) resulting in a higher SNIR. Clearly, the second case gives us a much higher

data rate overall and is the model we select in this thesis for the case when spatially

separated users share a common antenna and module. We note that beamforming
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is typically done in software by simply changing antenna weights and thus this

flipping can be done very quickly, well within the guard time between slots of a

TDMA schedule.

a1

a2

u1

u2

u3

u4

u5

LOS

2 antennas
with 2 modules
each

Figure 6.5: LoS graph between antennas and users.

The primary constraints we need to keep in mind when allocating frequency

channels and modules to users is the limited number of modules per antenna as

well as the limited number of channels. Therefore, we construct a graph that

incorporates these constraints in its topology in a natural way. In order to explain

this construction, we rely on an example where we have two antennas each with

two modules and five users. The visibility of the antennas to each user is shown in

Figure 6.5. Note that users u1 and u3 are not visible to a2 while u5 is not visible to

a1. Also, note that we have a total of four modules (2 per antenna) and five users

which implies that at least two users will need to time share a common link. We

maintain a LoS matrix cLOS with one row per antenna and one column per user.
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For our example the matrix is:

cLOS =





1 1 1 1 0

0 1 0 1 1





Starting from Figure 6.5 we construct a new graph where each node consists

of the pair aiuj corresponding to each edge from the LoS graph in Figure 6.5.

The edges in this new graph correspond to interference. We consider interference

between two users as well as from an antenna to a user either via LoS paths or

first order reflections.

To determine if a link exists between any pair of nodes in the graph we need

to compute the interference. To do this assume that each transmitter transmits at

a given power P dBm. Consider first the user-to-user interference between ui and

uj. We construct the LoS path between these users and use free space propagation

(since users are well above the ground) to determine the expected signal strength.

If there is a cubicle or other partition between the users, then we decrease the

signal strength by some amount that is determined by the material’s properties.

In addition to the LoS path, we find all the first-order reflections (i.e., we only look

at signals that are reflected once) and compute the estimated signal strength of

these paths – here, for the path loss we again assume free space but in addition, we

attenuate the signal based on the attenuation suffered due to reflection. Summing

up all these values, we get the signal power at ui due to a transmission by uj. This

information is maintained in a N ×N user-to-user interference matrix Iu2u.

If the value of interference between two users ui and uj exceeds some threshold

γ dBm then we assume that interference exists between these two users (our sim-

ulations use P = 10 dBm, γ = −70 dBm). In this case we put an edge between all

nodes akui and aluj ∀k and l. In a similar fashion, if a transmission from ak to ui

interferes with user uj, we put in an edge between akui and aluj ∀l. We maintain
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one N×N interference matrix Iak per antenna where row i corresponds to the case

that antenna ak is pointing to user ui and the entry at (i, j) is the interference seen

by user uj due to a transmission on the downlink from ak to ui. Combining the

various interference cases we obtain an interference graph and Figure 6.6 shows us

one such interference graph for our example.

a
1 u

1 a
1 u

2

a
1 u

3

a
1 u
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a
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2 u

4
a
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5

Figure 6.6: Interference graph derived from Figure 6.5.

Given the interference graph, we next prune nodes because we have to meet

the constraint that each antenna has only M modules available. The algorithm

for pruning is as follows:

1. For each antenna ak count the number of nodes in the interference graph that

include ak in their label. In our example, a1 has a count of 4 while a2 has a

count of 3. If the maximum count is greater than the number of modules at

that antenna then proceed to step 2.

2. Select the antenna with the highest count. Of the nodes in the interference

graph corresponding to this antenna, select the one with the highest degree.

In this case say we pick a1u4. We check to see if u4 appears elsewhere in the

graph. In this case the answer is yes, so we can delete this vertex. If the
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answer is no, we go to Step 1 above and continue with the antenna with the

second largest count.

3. Repeat Steps 1 and 2 until there are no more than N vertices (one per user).

4. At some point we will have pruned the graph down to exactly N vertices. If

the total number of nodes with ai in the label is less than or equal to M then

we can assign each of the users uj in the vertices aiuj to a unique module

at antenna ai. If the number nodes with ai in the label exceeds M , we have

to combine nodes together. Intuitively, the idea is to combine two nodes

aiuj and aiuk together if uj − uk have the highest user-to-user interference

and they share at least one common antenna. The specific algorithm we use

proceeds as follows:

(a) Consider matrix cLOS. Initially, each column j corresponds to user

uj ’s visibility from all antennas. However, as we start combining nodes

together, the columns are redefined. Thus, if we combine users ui and

uj , the new cLOS matrix will have one less column and the column i (if

i < j) now corresponds to both ui and uj’s LoS to all the antennas. In

this matrix entry (k, i) is a 1 if ak has LoS to both ui and uj. Otherwise

the entry is 0.

(b) For each pair of columns i and j from the latest cLOS matrix, let U i

and U j denote the set of all users that are represented by columns i and

j respectively. Let X denote the maximum user-to-user interference

between user’s in sets U i and U j ,

X = max
up∈U i,ul∈U

j
Iu2u(p, l)

We also compute the value of total downlink interference at U i from
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transmissions to U j and vice versa,

Y =
∑A

k=1maxup∈U i,ul∈U
j Iak(p, l)

+
∑A

k=1maxup∈U i,ul∈U
j Iak(l, p)

We then compute the “affinity” value,

T ij =
#shared antennas cols i, j × (X + Y − 1)

|U i|+ |U j |

We compute the affinity value over all pairs i, j corresponding to the

columns of cLOS and take the maximum. Those two columns in cLOS

are combined together (and the corresponding nodes in the graph are

combined together as well). The intuition here is to combine together

nodes that have strong mutual interference with each other.

This combining process continues until the total number of nodes with ai in

the label is ≤ M .

In our example, the first pruning step removes a1u4 while the second time

around we remove a1u2. The graph we have is shown in Figure 6.7. We note that

while a1 only appears on the labels of two nodes, antenna a2 appears on three

labels. Therefore we now need to collapse nodes with a2 in the label. In Figure

6.8 we show the final graph where we have collapsed a2u2 and a2u4 into one node.

This means that u2 and u4 will need to time share the link to antenna a2.

a
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1 a
1 u
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a
2 u

2
a
2 u

4
a
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Figure 6.7: Pruned interference graph.

Finally, when we have the pruned and collapsed graph, we need to assign

frequency channels to each connection (i.e., each node in Figure 6.8). We do this
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by using a simple greedy algorithm where we color nodes (i.e., assign channels) in

order of greatest to smallest degree. If we do not have enough colors then we go

back and collapse additional nodes together and re-run the coloring algorithm.
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Figure 6.8: Final collapsed graph.

6.3 EXPERIMENTAL DESIGN
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Figure 6.9: Laboratory setup used in the simulations (units are in cm).

In order to evaluate the allocation algorithm as well as to answer the larger
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Transmit power 10dBm

Noise -174 dBm/Hz

Channel Bandwidth 640MHz

Path loss Freespace

Smart antenna 21dBi

gain of main lobe

Sidelobe gain -6.5dBi

Target BER 10−6

γ (Interference threshold) -70dBm

Table 6.1: Simulation parameters

question of whether gbps/user rates can be provided, we implemented a very de-

tailed simulation in MATLAB. The simulator implements a detailed propagation

model for 60GHz and is capable of providing signal strength at any location in

the simulated indoor space. As input, we specify the architecture of the room we

wish to study including the reflection and absorption properties of all the materials

used in the room. For this simulation we used the layout shown in Figure 6.9. The

attenuation data we used in the simulations is based on measurements reported

in [27, 46] and is summarized in Table 6.2. We note that in the results reported

here, we only use the one room described above. The reason is that since 60GHz

signals do not propagate far therefore any large room can be split into smaller

parts and each studied separately. Table 6.1 shows the fixed parameters we use

in the simulations.

We use an ideal antenna model derived from [33] in our simulations. We used

the following variable parameters:

• We vary the number of users between 2 and 10 to study the effect of load
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Figure 6.10: Location of two antennas.

on the system. For each run for a given number of users, we place users

randomly uniformly in the room in meaningful locations (i.e., they cannot

be under tables or inside filing cabinets). We also select a random height for

each user between 0.5m and 1m above the ground.

• In one set of experiments we use 2 antennas with 3 modules each (shown in

figure 6.10) while in another we use 3 antennas with 2 modules each. Thus

the total number of beams we can form is kept at 6 for all experiments. Figure

6.11 shows the location selected for the three antennas and the coverage of

each antenna.

• The number of available frequency channels (FC) used varies from 2 to 5.
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Figure 6.11: Location of three antennas.

• We assume that each user has an omni-directional antenna.

Each experiment is repeated 100 times giving us a total of 9 × 2 × 4× 2 × 100 =

144, 000 individual runs.

At the end of a particular run we have an assignment of users to antenna/modules

and a frequency. We now use this information and calculate the actual SNIR at

each user and at each antenna. This information is then used to compute the data

rate that can be achieved in the system for that run.
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Description/ Attenuation [-dB] angle of incidence

Object ID Material 10 20 30 40 50 60 70

O1 White

Board/Acrylic

Glass

6.2 5.5 5.5 5.5 6.0 7.6 13.1

O2 Table/Wooden

Chipboard 1.3cm

13.4 10.7 9.5 11.7 7.9 5.5 5.3

O3 Book

Self/Wooden

Chipboard 1.3cm

13.4 10.7 9.5 11.7 7.9 5.5 5.3

O4 File Cabi-

net/Acrylic

Glass

6.2 5.5 5.5 5.5 6.0 7.6 13.1

O5 Glass Door/Glass

Smooth 0.8cm

8.8 9.8 12.1 9.1 5.5 3.4 2.6

O6-9 Desk/Wooden

Chipboard 1.3cm

13.4 10.7 9.5 11.7 7.9 5.5 5.3

O10-12 Partition/Wooden

Panels 1.9cm

22.0 21.7 18.4 18.2 15.2 9.3 6.5

Table 6.2: Attenuation values used from [27, 46].
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6.4 RESULTS

Modulation Code Rate Min Eb/N0 for Pb ≤ 10−6 Rate (Mbps)

64-QAM 3/4 22.65 dB 1080

64-QAM 1/2 22.65 dB 960

16-QAM 3/4 19.1 dB 720

16-QAM 1/2 19.1 dB 480

QPSK 3/4 16.7 dB 360

QPSK 1/2 16.7 dB 240

BPSK 3/4 11.45 dB 180

BPSK 1/2 11.45 dB 120

Table 6.3: Bit per second for different Modulation Schemes with block code rate

used [14].

In order to determine the achievable data rate, we compute the SNIR values

for each link formed after running the allocation algorithm. Then we assign the

appropriate modulation and coding rates from Table 6.3 to each link and compute

the total data rate in the room (these particular modulation and coding schemes

are proposed in the draft 60GHz PHY standard [14]). This value is divided by

the total number of users to obtain the average data rate per user. For each of

the 1440 individual experimental set ups, we run the algorithm for 100 different

user placements. The average data rate as well as the 95% confidence bounds are

plotted in figure 6.12 and figure 6.13.

We note several interesting features of these figures. First, as the number of

users increases, the average data rate per user drops from almost 1Gbps to between

300 and 600 Mbps. The drop is steeper when we have 2 frequency channels (FC=2

in the figure). Another interesting feature is that the drop is gradual (for FC =
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Figure 6.12: Average data rate per user for two antennas and three radios each

case.

3,4,5) for upto 6 users after which the drop is faster. This happens because we

have a total of six radios (either 2 antennas each with 3 radios or 3 antennas each

with 2 radios) only and thus as the number of users continues to grow, more and

more users end up sharing a link. Indeed, Figure 6.14 plots the average number

of users sharing a beam for the case with three antennas. With the exception of

the case with two channels, in all other cases, each user has its own beam when

the number of users is ≤ 6. However, after that the users need to share since not

enough radios are available. Indeed, for the case of 3, 4, 5 channels, the average

number of users per beam from the figure (when the number of users is greater

than 6) is very close to the actual number of users divided by 6.

The case when we have only 2 channels is an interesting one since it illustrates
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Figure 6.13: Average data rate per user for three antennas and two radios each

case

the problem with interference even in the case when we have enough antennas

and modules to form spatially separate beams. Consider 6.15 where we plot the

total number of beams formed. In the case with 2 channels, the number of beams

formed reaches a maximum at around 4 implying that several users share the

beams resulting in a lowered data rate per user. Interestingly, when we have 3 or

more channels, we form 5-6 beams (where 6 is the maximum that can be formed)

because we have enough frequency channels to ensure less interference between

users. Indeed, recall that after we form a collapsed graph (Figure 6.8) we run a

greedy coloring algorithm to assign channels to each link. However, if not enough

channels are available we collapse more nodes together. This is what happens

when we only have 2 frequency channels that then results in lowered data rate.
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Figure 6.14: Average number of users sharing a beam for the omni case.

Finally, let us look at the SNIR scatter plot for the case when FC=2 on the

downlink at the user (after channel allocation is done), Figure 6.16. We observe

that in most cases the values range between 20 and 60 dB while in some cases we

see a 0 dB. The 0 dB case happens when the user is in a dead spot. Otherwise we

see the other range of values. The theoretical data rate that we then see is derived

from Table 6.3. It is interesting to observe that the SNIR is quite large in many

instances thus attesting to the fact that the 60GHz signal attenuates significantly

with distance and with reflection/transmission through materials. Indeed, this

figure best illustrates why this frequency band can provide high data rates.
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Figure 6.15: Average number of beams formed for the omni case.
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Figure 6.16: SNIR per link when we have two channels for the omni case.
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Chapter 7

ARCHITECTURE FOR 60GHZ DEPLOYMENTS: MULTIPLE

CO-LOCATED ANTENNAS

Multiple Co-located Antennas associated with multiple beamforming modules at a

single AP allows multiple links to operate simultaneously such that the aggregate

data rate is maximized. Each beamforming module has highly directional gain

gives us the opportunity to exploit the spatial locality of a beam. In this chapter,

we look at the problem of determining the protocol-independent maximum and

average throughput of a 60GHz system when the AP as well as users are equipped

with identical smart antennas.

The array elements of an antenna can be arranged in many ways. In this

thesis, we study two of them: linear and circular array. We choose these two

type of antenna arrays because they are geometrically very different. This will

give us an idea of how the geometry of array elements affect the performance.

The other important design choice is how to allocate users given limited resources.

In chapter 6, a dynamic allocation is used to allocate user. This means access

points beamform at the user where the user is located. Therefore, the user always

receives the maximum signal power of the beam. Another allocation alternative is

to statically partition the room and allocate a frequency channel to each partition

(similar to cell phone networks). This may, unfortunately, cause the signal strength

at the user to be well below the maximum. However, this approach is simpler and

results in less computational complexity.
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Below, we first study the capacity of the two antenna types (linear and circular

array) using static allocation. As we will see, the results show that a linear array

achieves higher capacity than a circular array because of lower interference between

partitions.

Secondly, a comparsion of static allocation and dynamic allocation is given in

section 7.2. An important result is that, due to interference in dynamic allocation,

this scheme can not scale with the number of users even when using multiple

channels. In contrast, static allocation is a better choice because, in addition to

the performance gain, static allocation also gives us a simpler system design over

all.

Finally, we develop an analytical model for static allocation and show a close

match with simulation. In this study, we assume perfect channel sharing (e.g.,

using TDMA) in each beam.

7.1 STATIC ALLOCATION: LINEAR VS CIRCULAR

The idea of static allocation is to first partition the room into fixed regions and then

assign frequency channels to each region. Within the same region, TDMA is used

to support multiple users. For example, Figure 7.1 illustrates three users(A,B,C)

in a room which has N regions (the shape of the region depends on the array

arrangement, this example is independent of the region shape). B and C are in

region 2 while A is in region N. Therefore, B and C have to share the frequency

channel using TDMA.

The shape of the region depends on how the array elements are arranged. In

section 7.1.1, we see that a linear array forms a long strip while circular array

forms an irregular shape. Each region may have different shapes even though the

same type of antenna array is used. The shape also depends on the angle at which
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Region 2

Region N

...
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A

Figure 7.1: Example of a partition room with N regions.

the beam intersects the floor. We determine the region based on the following

rules:

• Each region’s coverage area is defined to be the locations that have a signal

strength within 3dB of the main beam boresight. This provides a strong

enough signal to have good connectivity for the entire region.

• Interference should be minimized between regions.

After each region is identified, each module beamforms at the center of its re-

gion while using nulls to minimize the interference from other simultaneous trans-

missions in other regions (the reader can find the nulling technology in detail in

Chapter 4). To improve the signal to interference ratio, we introduce a novel

nulling method to greatly reduce interference to almost noise level. Details of the

nulling method for each type of antenna array will be given in the two sections

below.
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7.1.1 Linear Array: Constructing Regions

Elements of a linear array lie on a straight line. Figure 7.2 shows the antenna gain

in dBi from the AP to the user. The AP is located at the center of the room on

the ceiling and the user is located at coordinate (150,150,50). As is evident, the

rotational symmetry (about the array axis) causes the region of highest gain to

be spread in a narrow strip across the floor of the room (when viewed on the x-y

plane). Indeed, if we sweep the beam across all the angles, we will see this strip

move in the direction of the y-axis. This behavior gives us a natural way to think

about constructing multiple regions.
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Figure 7.2: Gain with 20-element linear array pointing to (150,150,50) and the

axis of the antenna aligned along the y-axis (units are in cm).
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It is evident that there are large number of possible solutions (given the con-

tinuous nature of the variables such as angle) to the problem of where to point

each beam and then sweeping the beams to cover the room. One important con-

sideration we need to keep in mind is that the entire room needs to be covered.

Therefore, our approach is to sweep the beams across the room in discrete time

steps to identify regions of coverage and using these as the resource to be allocated

to different beamforming modules. To explain the idea, let us consider a room

of dimensions 10m X 10m X 3m. The linear array is located in the center of the

ceiling at (5m, 5m, 3m) and aligned parallel to the x-axis. We begin by forming a

beam to a user located at (0.1m, 5m, 0.5m). We define region 1 as all the locations

that are within 3 dB of the maximum gain. Region 2 is now formed by aiming the

beam at another point (x m, 5m, 0.5m) and including all locations that are within

3 dB of the maximum gain of this beam. The value of x is such that the overlap

between region 1 and region 2 is very small and these two regions are right next

to one another. This process is continued until we cover the entire room.
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Figure 7.3: The 21 regions formed with a linear array.
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Figure 7.4: The gain seen at the 21 regions formed with a linear array.

Figure 7.3 shows the 21 regions obtained for the example room we are consider-

ing. As we can see, the shape of each region is slightly different from one another.

Figure 7.4 plots the corresponding antenna gain when we point the beam at the

center of each region. The gain shown in the 2D plot corresponds to the gain seen

along the line connecting points (0m, 5m, 0.5m) and (10m, 5m, 0.5m) the line

running along the center of the room parallel to the x-axis and 0.5m above the

floor. Note that the gain seen in region i from a beam formed towards region i+1

(or i− 1) is less than 3 dB (in Figure 7.4 this is shown via the intersection of the

horizontal line with the gain plot).

7.1.2 Linear Array: Constructing STDMA Schedule

Assume the AP has multiple beamforming modules (so it can support multiple

simultaneous transmissions). Regions can then be used to form spatial channels
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such that users located in different regions can transmit simultaneously. Users that

are not spatially separable can be assigned resources using TDMA resulting in a

STDMA (Spatial Time Division Multiple Access) schedule.

As an example, given two modules, we can form one beam at some angle θ1 and

the other at θ2 such that the interference between these two beams is low enough

to maximize throughput. In other words, the gain of the transmission at angle θ1

in the direction of θ2 should be very small, and vice versa. This constraint can

be naturally extended to the case when we have k modules available at the AP

allowing us to form up to k links.

For a given STDMA schedule, we compute the maximum and average obtain-

able throughput as follows. The maximum throughput is the mean of the maximum

throughput seen in each region. The maximum throughput in a region will typi-

cally only occur at a few points. This is the value used for that region. The average

throughput for the WLAN is the mean of the average throughput’s seen in each

region. The average throughput in a region is computed by randomly uniformly

placing a user in the region and finding the mean data rate. To compute the data

rates, we use system parameters from Tables 7.1 and 6.3.

The STDMA schedule is found simply as follows. For k modules, we can simul-

taneously form k beams. To ensure that interference between beams is minimized,

we maximize the angular separation between the beams. Figure 7.5 shows the

example of k = 7. Therefore, we have the following schedule: {(1,4,7,10,13,16,19),

(2,5,8,11,14,17,20), (3,6,9,12,15,18,21)}. Thus we use 3 time slots and in each we

simultaneously have 7 links. In the figure, the regions that have the same color

are assigned to the same time slot. The schedule for k = 8 is: {(1, 4, 7, 10, 13, 16,

19, 21), (2, 5, 8, 11, 14, 17, 20), (1, 3, 6, 9, 12, 15, 18, 21)}. As we can see, when

the number of regions is not perfectly divisible by k, the separation of regions in

the same time slot is not uniform. Given r regions and k modules, the separation
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Room dimensions 10m x 10m x 3m

AP location Center of ceiling

Transmit power 10 dBm

Bandwidth 640 MHz

Modulation Table 6.3

No. antenna elements AP and user M = 20

No. Modules k at AP 1 – 21 (Linear)

1 – 49 (Circular)

Table 7.1: Experimental Parameters.

between regions in the same time slot is either ⌊ r
k
⌋ or ⌈ r

k
⌉.

Figure 7.5: Example of linear array schedule for k=3
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7.1.3 Linear Array: M-1 Nulling Method

In our experiments, we also use the nulling capability of smart antennas. Thus,

given k modules, we form k simultaneous beams – each module beamforms in one

direction and nulls the remaining k − 1 directions. For instance, if k = 3 and

regions (1,8,15) are active simultaneously, the module that beamforms towards

region 1 also nulls the center point of regions 8 and 15, and so on. An interesting

observation we can make is that since our antennas have M = 20 elements, we can

potentially form 19 nulls per module. Thus, if k < M and we form k − 1 nulls

as described, we still have the capability to form an additional M − k nulls per

module. The question is where to form the additional nulls, and whether this is a

useful thing to do.
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Figure 7.6: Beamform to region 1, place a single null in region 11 (x-axis is in cm).

We research this question in some detail. Consider Figure 7.6 where we beam-

form towards region 1 and null the center of region 11 and we only use k = 2

beamforming modules. If we look at the gain at areas close to the null, we see a

steep increase in gain – the center of region 11 is at -48 dBi while the edges are
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at -30 dBi. This means that even if we null the center of any region from Figure

7.3, it is likely that there will be significant gain as we go to the boundaries of

that region, which will result in more interference. This observation means that

given the opportunity to form additional nulls, we should form more than one null

per region at different angular locations such that interference in that region is

reduced overall. In Figure 7.7 we plot the case when we form M −1 nulls in region

11 (each null is incrementally located a small fraction of a radian off center) while

beamforming to region 1 and vice versa. We see that the interference from beam-

forming at region 1 towards region 11 is now well below -100 dBi across the entire

span of region 11 (and vice versa). This clearly indicates that forming multiple

nulls within a region is a beneficial thing to do.
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Figure 7.7: Forming 19 nulls in each region (x-axis is in cm).

We compared the cases when modules only form k−1 nulls and when modules

form M − 1 nulls. The algorithm we used to allocate the additional M − k nulls is
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as follows. For each of the k − 1 nulling directions, we allocate ⌊M−k
k−1

⌋ additional

nulls. These nulls are then formed at angles ±ǫ,±2ǫ, · · · about the center of the

region until we form all the allocated nulls. The performance of the algorithm for

different values of ǫ are somewhat different and in our plots we report on only two

extreme values, ǫ = 0.0005, 0.03 radians. Another method we consider is called

uniform where we first find the beamwidth of a region (i.e., the 3 dB boundary)

and then distribute the ⌊M−1
k−1

⌋ nulls equally spaced (in an angular sense) in the

region. Note that in all experiments the user also beamforms towards the AP using

an identical antenna array. However, the user does not form nulls since interference

from uplink transmissions from other users is negligible.
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Figure 7.8: Maximum throughput for the linear array.

Figure 7.8 plots the maximum throughput obtained for the room we are con-

sidering as a function of the number of beamforming modules available, k. Figure

7.9 plots the average throughput. Initially, as we increase the number of modules,

the throughput (maximum and average) also increases linearly as seen in the two

figures. This is because the mutual interference is very low and thus we are simply

gaining throughput as we add modules. Let us now look at Figure 7.8 in more

detail. It is interesting to note that the maximum throughput of 22 Gbps is ob-

tained when using 20 modules and forming k−1 = 19 nulls. Indeed, the maximum
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Figure 7.9: Average throughput for the linear array.

data rate is equal to the number of modules multiplied by 1.08Gbps. Furthermore,

forming k− 1 nulls is the best choice rather than forming M − 1 nulls! The reason

for this is that since we are only finding the best SINR per region (a single point),

when we form M − 1 nulls per region, the main beam shifts and flattens slightly

resulting in lower desired signal levels. There appears to be little difference in

maximum throughout for the two values of ǫ selected.

If we look at the average throughput in Figure 7.9, however, the story is quite

different. The maximum throughput of 9 Gbps is obtained at 10 and 11 modules

when we formM−1 = 19 nulls. Indeed, forming only k−1 nulls causes the average

throughput to reduce in half. The reason that forming more nulls is better is simply

that we reduce interference levels in the region as a whole from other beams. Since

the average is computed by assuming a uniform random user placement over the

entire region, more nulls provide a greater overall benefit. Increasing the number of

modules beyond 13 appears to be detrimental as we increase the total interference

seen and thus lower the data rate. In Figure 7.10 we plot the signal levels at each

region when using k = 14 modules and beamforming at region 1. There is one

plot for the case when forming M − 1 nulls using the uniform algorithm and for

the case when forming k − 1 nulls. As is clear, the desired signal in region 1 is
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much higher when we only form k − 1 nulls. The reason is that as we form more

and more nulls, the main beam flattens out and spreads more. Therefore, there is

an optimal number of nulls one can form that trades off the benefits of reducing

interference with the cost of reducing the desired signal strength.
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Figure 7.10: Comparison of the desired signal levels when using 14 modules.

7.1.4 Circular Array: Constructing Regions

The array elements of a circular array form a circular shape. Figure 4.6 shows

the antenna gain beamforming from the AP to the user. The AP is located at the

center of the room on the ceiling and the user is located at coordinate (150,150,50).

In order to illustrate the effect of interference from the sidelobe(i.e. unintended

signal created in other direction), the figure on the right shows the exact same

antenna gain but the unit is recalculated in dB. As we can see, there is significant

signal power in the area beside the main beam.

We use similar methodology to construct the regions for the circular array as

we did for the linear array. However, there are two angles of freedom in the circular

array (there is only one angle of freedom for the linear array). Therefore, we have
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to sweep the room in both x-axis and y-axis. Here are the steps to construct the

regions (assume the AP is located in the center of the ceiling at (5m,5m,3m)):

• We overlay a grid on the room floor with grid squares of size 10cm x 10cm.

• Beamform at (0.1m,0.1m,0.5m) and calculate the corresponding boresight

angle. For every grid that sees a signal strength within 3dB of the maximum,

assign it to region 1.

• Next, sweep the boresight along the y-axis and beamform at (0.1m, y m,

0.5m) where y is such that the overlap of the first beam and second beam

is minimized and the covered area remains within 3dB from the maximum.

Assign all of these grid locations to region 2. Note that some of the grid

locations in the first coverage region will also belong to the second cover-

age region. As a result, these grid locations are now assigned to region 2.

Continue this process along the y-axis.

• Return to region 1 and sweep along the x-axis to find the grid locations not

covered. Now repeat the previous step sweeping along the y-axis but starting

at this new position.

• Repeat the above two sweeps until the entire room is covered.

Figure 7.11 shows the regions for a circular array with 20 elements. As we can

see, the regions formed are not uniform and are of different sizes. The reason for

this is two fold: first, we use 10cm x 10cm grids and as a result the boundaries

are not smooth. Second, after grid locations are assigned to one region, some of

them may be reassigned to another region. Both of these factors together cause

the observed asymmetry. For the 10m × 10m room, we get 49 distinct regions.

Observe that as we get further away from the center of the room, the regions get

elongated. This happens because the beam hits the floor obliquely.
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Figure 7.11: The 49 regions formed with a circular array.

7.1.5 Circular Array: Constructing STDMA Schedules

Again, multiple beamforming modules at the AP is assumed. As in the case of the

linear array, the problem of computing the maximum and average throughput relies

on constructing appropriate STDMA schedules with k modules such that the room

is completely covered. There are many different approaches one can take to find the

best possible throughput (indeed, the problem of finding the optimal throughput

can be shown to be NP-complete). However, we instead use the following algorithm

for its computational simplicity. Given k modules, we compute d = ⌊49
k
⌋. The

schedule then is: {(1, d+ 1, 2d+ 1, . . . , (k1)d+ 1), (2, d+ 2, 2d+ 2, . . . , (k − 1)d+

2), . . . , (d, 2d, 3d, . . . , kd)}. If the number of regions is not perfectly divisible by k

then we will need an additional time slot to accommodate the remaining regions.

Figure 7.12 shows the example of k = 17. The schedule looks like {(1, 4, 7, 10, 13,

16, 19, 22, 25, 28, 31, 37, 43, 46, 49), (2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44,

47) , (3,6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48)}. The regions colored in

blue is assigned to time slot 1, white is assigned to time slot 2 and black is assigned
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to time slot 3. From the figure, observe that the number of neighbouring regions

for circular array is more than linear array. This means that regions introduce

more interference in the case of circular array. We use the same methodology to

compute data rate using system parameters from Table 9.1 and 9.2.

Figure 7.12: Example of circular array schedule.

7.1.6 Circular Array: M-1 Nulls

The problem of forming nulls is similar to the discussion we had previously. Thus,

we consider the case when we form only k-1 nulls given k modules and when we

form M-1 nulls. Because of the two angles of freedom in a circular array, we need

different algorithms for forming ⌊M−1
K−1

⌋ nulls per region. The challenge of forming

nulls in the circular array is that each region has an irregular shape and it is hard

to find the best way to find the optimal M-1 nulls. Therefore, we compare two

different algorithms.

The first algorithm, called ǫ-walk is illustrated in Figure 7.13. The idea is that
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we walk along a grid of side ǫ around the center of a region and use the vertices

as locations for the additional nulls. In our experiment, we try different values

of ǫ and find the one that gives us maximum throughput. The second algorithm

is illustrated in Figure 7.14. Here, we take the region to be nulled and uniformly

distribute ⌊M−1
K−1

⌋ nulls within it. The difference between the ǫ-walk and the uniform

case is that in the ǫ-walk algorithm, the nulls will tend to be clustered about the

center of the region while the nulls are uniformly distributed about a region in

the other case. From the experience of M-1 nullings in linear array, we know that

the more uniform the nulls placement, the lower the interference. However, the

later method requires manually picking the nulling points while the ǫ-walk tries to

automate the process.

Figure 7.13: ǫ-walk algorithm.
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Figure 7.14: Uniform placement of 16 nulls.

7.1.7 Circular Array: Results

Figure 7.15 plots the maximum throughput for the circular array. We note that

the maximum throughput of 8 Gbps is obtained when we have 11 modules. In-

terestingly, forming more than k − 1 nulls does not have much of an impact. The

reason is the same as in the linear case where forming more nulls does not improve

maximum throughput as it is computed at one point per region (the point that

has the highest SINR). However, in comparing these results with those in Figure

7.8, observe that the maximum throughput for the circular array is far below the

linear case, even though we expect the circular array to provide a narrower beam.

87



www.manaraa.com

The reason for this difference is made clear if we look at Figures 7.2 and 4.6. The

SIR for a link can be shown to be proportional to the ratio Gt/GI where Gt is

the gain of the transmitter in the direction of the receiver and GI is the gain of

the interferer in the direction of the receiver. Note that in our case, the desired

transmitter as well as the interferer are co-located (we simply use different mod-

ules for beamforming and nulling). In the case of the linear array from Figure 7.2,

Gt = 13.72 dBi and GI = −3.09 dBi (on average). Thus the SIR is proportional to

Gt/GI = Gt (dBi)−GI (dBi)= 16.81 dBi. In case of the circular array the values

we have are Gt − GI = 14 − 1.68 = 12.32 dBi. The difference in SIR between

the linear array and the circular array is thus more than double (3 dBi) and this

explains why the linear array shows greater maximum throughput.
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Figure 7.15: Maximum throughput with a circular array.

Figure 7.16 plots the average throughput for the circular array. We obtain a

maximum of 3.25 Gbps when using 4 modules and forming M − 1 nulls uniformly

spaced in the regions being nulled. The ǫ-walk algorithm does not perform as

well since the nulls are being clustered about the center of the region which leaves

the remaining parts of the region to have non-trivial gain values. The difference

between forming only k − 1 nulls and M − 1 nulls is more than double, as in the

linear case.
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Figure 7.16: Average throughput with a circular array.

The wavy behavior of the maximum throughput plot and the average through-

put plot is an artifact of the manner in which the STDMA schedules are con-

structed. When k = 8, with 49 regions, we get ⌊49/8⌋ = 6. Thus, regions (1, 7,

13, 19, 25, 31, 37, 43) are assigned to the same time slot. As we can see in Figure

7.11, all regions with the exception of 1 lie next to one another along a diagonal.

Thus, even though we perform nulling, the SIR is going to be poor.

In summary, our detailed analysis indicates that a linear array provides higher

average and maximum throughput. Further, given the symmetry of the beam

formed by the linear array, statically dividing the room into regions enables efficient

spatial channel allocation. Finally, forming multiple nulls in a direction (with a

small angular separation between the nulls) doubles average throughput.

7.2 STATIC VS DYNAMIC ALLOCATION

The results in Section 7.1, which showed the obtainable average and maximum

throughput, was based on a static STDMA schedule where the assumption (for the

average case) was that users were uniformly randomly located all over the room.

In reality, this is a rare situation that may only occur when we are considering

rooms that have a great many users (e.g., lecture halls). What happens if the
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users are clustered in some discrete locations? Clearly, allocating the channel to

parts of the room that are empty is meaningless. How, then can we construct an

efficient STDMA schedule?

The simplest approach is to continue using the static regions identified in Figure

7.3 and 7.11. However, we create a transmission schedule that only covers those

regions that contain users. The only constraint in constructing the schedule will

be to meet the user QoS needs. For example, if one region has 5 users while

another has only one user, then the STDMA schedule should give five times as

much time to the region with more users. Similarly, given data rate requirements,

the STDMA schedule can be trivially adapted to satisfy those needs as well.

Unfortunately, we can easily create situations where using the statically identi-

fied regions as in Figures 7.3 and 7.11 will not be efficient. For example, if users are

located on the boundaries between regions, then the signals they will receive will

be 3 dB less than the signal they would receive if they were located in the middle

of the region. In these cases, therefore, it makes sense to redefine the regions and

create STDMA schedules around those regions. The algorithm for identifying the

regions is simple. For the linear antenna array case where the elements are parallel

to the x-axis we order users using the x-coordinate and begin beamforming to each

starting with the leftmost (lowest x-coordinate). Users who fall within the 3 dB

beamwidth of an already formed beam are allocated to that beam. For the circular

array case, we can run a similar algorithm by systematically sorting through the

user locations.

What is the data rate we would get if we use dynamic STDMA? It is clear that

the maximum rate can be no better than what we saw when using static allocation

in Figures 7.8 and 7.15 because these rates are calculated by finding the maximum

rate per region (at a single point). Indeed, for large enough number of dispersed

users, the average rate we get will also be close to what we saw for the static case.
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7.2.1 Static STDMA

Recall the static allocation in section 7.1 as follow:

• Let N be the number of users. Find the region that each user falls into. Sort

the users according to region number.

• Let ρ take positive integer values.

• A schedule may consist of one or more time slots. In the first time slot, the

user in the lowest numbered region is allocated a channel (and a module). If

the user is in region number x then a user from region numbers x+ ρ is also

allocated a channel in the same time slot.

• If some users have not yet been allocated a time slot, we remove the users

already allocated a slot and run the above algorithm for the remaining set.

• If all users have been allocated a time slot, we are done and the schedule

repeats.

We explore the performance of the algorithm for ρ = 1, 2, 3. When ρ = 1

we allow neighboring regions to be active simultaneously. This results in higher

interference and thus lower data rates. If ρ = 3 we get the lowest interference but

the schedules will be longer since fewer users are packed into one time slot.

7.2.2 Dynamic STDMA

The dynamic algorithm performs channel allocation by first sorting users according

to their angular locations with respect to the AP. The schedule is then constructed

as follows:
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• In the first time slot, the leftmost user (smallest θ) is allocated a module.

The first user outside the 3 dB of the beam formed towards the first user is

then allocated a module, and so on. In other words, all users who do not lie

within the 3 dB beamwidth of each others beams are allocated the channel

in the first time slot. Each of these users then forms nulls in the direction of

the other users in the same slot.

• Of the remaining users who have not been allocated the channel, we perform

the above step again. This process is continued until all users have been

allocated the channel.

The primary difference between the dynamic and static cases is best illustrated

by considering a single user. In the static case, this user will be allocated a static

beam in some region. However, if the user is not in the center of the region, the

gain will be smaller than if the beam was formed directly at that user, as in the

dynamic case. Thus, we expect that the signal strength of the desired signal in the

dynamic case will be better than in the static case.

7.2.3 Comparsion of Static and Dynamic STDMA for Single Channel

For our experiments we used the system parameters given in Tables 7.1 and 6.3.

The simulations were conducted in MATLAB using a detailed propagation model

developed for 60GHz utilizing measurement studies described in section 2. The

metrics we studied are:

1. The average total (or aggregate) throughput in one WLAN. This is calculated

by randomly placing N users in the room and running the two SDMA algo-

rithms. After finding the SNIR for each user, we find the data rate achieved

using Table 6.3. The throughput per slot in the schedule is the sum of the
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data rates per user in that slot. The data rate is summed over all slots in

the schedule and averaged by the number of time slots.

2. The average number of modules or radios used at the AP. As we mentioned

previously, the number of modules we use is a function of the room geometry

and not N since interference is the limiting factor on achievable throughput.

We plot the number of modules used as a function ofN to show this behavior.

3. The average delay is the average number of slots per schedule.

Figure 7.17 plots the average total throughput in the room as a function of

N for the static and dynamic algorithms (all figures show the 95% confidence

intervals). As the number of users increases, the total throughput in the WLAN

also increases, as is to be expected since more users are active. However, after

peaking at 8 gbps at 25 users, the throughput falls somewhat for the dynamic

case because of increased interference as more users are allocated in the same time

slot. The throughput for the static case (for ρ = 1, 2, 3) is much smaller than the

dynamic case for N ≤ 35. The reason is that in the static case we may have two

users at the opposite ends of a region’s boundary but they will be allocated to the

same region (and hence to different time slots in the schedule). In the dynamic

case, however, it is likely that these two users will be allocated to the same time slot

because they lie outside each other’s 3 dB beamwidth. AsN increases, however, the

static case and dynamic case become similar in performance because the schedule

lengths are similar. Figure 7.18 plots the average length of a transmission schedule

for the various schemes.

The performance of the static algorithm for different ρ values is quite differ-

ent. The reason ρ = 1 is the poorest performing algorithm is that by allowing

neighboring static regions to be active simultaneously, we are increasing interfer-

ence. When ρ = 3, however, interference is minimized allowing higher data rates.
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Figure 7.17: Average throughput.

Figure 7.18 shows the schedule lengths for different schemes. As we can see, the

schedule length for ρ = 1 is 1 while it is 50% greater for other values of ρ and

for the dynamic case. Indeed, while shortening the schedule length helps increase

the throughput for the ρ = 1 case, the increased interference causes a far greater

reduction in throughput.

Figure 7.19 plots the number of modules at which maximum throughput is

obtained for each value of N for each algorithm. As expected, the number of

modules used by the static case when ρ = 1 is by far the largest. However, for the

dynamic case (which has the highest throughput for all values of N), the number

of modules used is no greater than 10. This indicates a good separation of beams

between nodes assigned to the same time slot.
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Figure 7.18: Average schedule lengths.
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Figure 7.19: Number of modules used to maximize average throughput.
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7.2.4 Static and Dynamic STDMA in Multiple Channels

The 60GHz ISM band has over 5GHz of available bandwidth allowing us to utilize

multiple channels simultaneously within a cell. We therefore modified the static

and dynamic SDMA algorithms to examine the potential benefits of doing so. The

modification made in each case is the same:

• Start with a transmission schedule constructed for the single channel case. If

this schedule has m slots and m ≤ 7 (with 5GHz of bandwidth we can get a

total of 7 channels of 640MHz with 80MHz spacing), we shrink the schedule

down to one time slot and assign users from each slot of the static schedule

to a different channel. Frequently, m is of the order of 2-3 time slots. This

means that we will be left with 4-5 free channels. We divide these channels

among the users as follows. Take the channel with the largest number of users

and split the set in two with one subset retaining the original channel and

the other subset being assigned to a new channel. This process is repeated

until no channels remain.

In the unusual case that m > 7, we shrink the first 7 slots into one slot as

above, and repeat the algorithm for the remaining m − 7 slots yielding a

multi-slot schedule.

A point to note is that the number of radio modules used in this case will equal

the total number of users in the slot. Therefore, unlike in the single-channel case,

the total number of radio modules will be much greater.

Figure 7.18 plots the average number of time slots as a function of N . As we

can see, m ≤ 2 in most cases. Thus, as per the algorithm above, we will first

reduce the schedule length to one slot by assigning separate channels to users in

each time slot from the single-channel schedule and then we allocate the remaining

5 channels.
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Figure 7.20: Average throughput utilizing multiple channels.
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Figure 7.21: Data rate per user utilizing multiple channels.

7.2.5 Analytical Model

Figure 7.20 plots the average aggregate throughput in the room as a function of

N . Note the almost linear scaling of the static algorithm (ρ = 3) with N . Indeed,

the maximum throughput of 31 gbps is obtained at N = 50 users. To understand

this performance, consider the following approximate mathematical model. Recall
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that the static algorithm uses the k = 21 statically defined regions to allocate

the channels. Let n denote the number of users in the system. These users are

randomly uniformly distributed among the k regions. If a region has no users in

it, we do not allocate a channel to that region. On the other hand, if a region

has two or more users, we allocate two channels to that region and distribute users

equally between the two channels. In the static algorithm with ρ = 3, we can reuse

the channels every fourth region. Thus, channels used in region 1 can be reused

in region 4 and so on. The schedule for this model of the static algorithm has a

length of one slot. In order to compute the aggregate data rate, we need to find

the number of regions r1 with exactly one user and the number r2 with more than

one user. The aggregate throughput is then written as:

S = 7/6 (r1 + r2 × 2) gbps

Note that we multiply r2 with 2 since we allocate two channels and the aggregate

rate per channel can be as high as 1 gbps. We multiple the expression on the right

by 7/6 since we are using only 6 out of the 7 possible channels (that are used in

the simulation).

In order to compute r1 let us first find the probability p1(i) of the event when

i regions out of k have at least one user. We can write this as,

p1(i) =





k

i









n− 1

i− 1









n+ k − 1

n





Out of these i regions some number j will have more than one user. The conditional

probability p2(j|i) of this happening can be calculated using the above formula but
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Figure 7.22: Analytical model for the static algorithm with ρ = 3.

substituting k with i, n with n− i, and i with j. Then,

r2 =

k
∑

i=1

p1(i)

i
∑

j=1

jp2(j|i)

We can then obtain r1 as,

r1 =

k
∑

i=1

ip1(i)− r2

Figure 7.22 plots the analytical model versus the simulation for the static algo-

rithm. As we can see, the correspondence is very good. We observe that the above

analysis can be carried forward for other values of ρ as well.

A second item of note is that the throughput of the dynamic algorithm is much
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worse than that of the static algorithm (ρ = 3) unlike the case with a single-

channel. The reason for this is that in the dynamic algorithm, spatial channels

are separated by 3 dB only whereas the separation is much greater with the static

algorithm when ρ = 3. The impact of this difference in channel spacing in the

single-channel case is that we get a shorter schedule for the dynamic algorithm as

opposed to the static algorithm, Figure 7.18. The immediate impact of a shorter

schedule is greater aggregate throughput. In the multiple-channel case, all sched-

ules end up being of length one slot and thus the dynamic algorithm loses that

advantage. On the other hand, because the dynamic algorithm separates simulta-

neous spatial channels by only 3 dB, the interference in each channel is significant

and starts playing a dominant role. This is why the dynamic algorithm performs

poorly compared to the static algorithm.
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Chapter 8

LINK REPAIR FOR MOBILE USERS

60GHz is well-suited for device-to-device communication and for general in-home

applications due to its huge available bandwidth. However, links at this frequency

are easily degraded by environmental conditions. Indeed, the poor multi-path

makes it necessary to maintain good LoS (Line of Sight) paths between commu-

nicating pairs of nodes. In this chapter we analyze the problem of link breakage

and degradation in point-to-point 60GHz networks. We propose two techniques

to provide alternate paths between communicating nodes when the direct path

degrades. The first technique uses static reflectors. This is a simple approach in

which we add reflective material to the walls to provide an alternative path. The

second technique uses repeaters. The decision on which path to use is driven by

the goal of maximizing data rate per connection as well as overall throughput in

the network.

Using extensive simulations we show that that by using static reflectors, we can

maintain the connectivity at a cost of a reduction of 200Mbps in throughput. On

the other hand, by carefully using repeaters, we can maintain Gbps rates for each

pair of communicating nodes in indoor spaces.

8.1 PASSIVE/STATIC REFLECTORS

The 60GHz spectrum is susceptible to oxygen absorption and higher attenuation

when encountering different materials in its path. The implications of this poor
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signal propagation for WLAN design means that the connectivity of users may be

poor. Thus, a user may be blocked by a wall or partition from the AP resulting

in poor signal quality causing in very low data rates. Similarly, a user’s link may

be intermittently broken by the movement of other people in the room. Finally,

as a user with an open connection moves about the room, the link may again be

subject to obstructions. The challenge is how to mitigate these various types of

connectivity problems.

The approach we study in this thesis is to use strategically placed reflectors to

provide alternate paths for the signal to reach such disadvantaged users. Materials

such as wire mesh glass [46] have excellent reflective properties at 60GHz and only

attenuate the signal by 3dB for most angles of incidence. Thus, by placing sections

of this material strategically on the walls of the room, the AP can provide better

coverage.

Let us examine the problem of integrating reflectors into the STDMA schedules

developed for the linear and circular antenna arrays respectively. In the case of a

linear array, say we were to place a reflector on one wall (assume the array axis

is parallel to the x-axis and we place the reflector on the wall parallel to the x-z

plane). This has the effect of reflecting some regions back into the room. Consider

Figure 8.1 where we assume that two walls parallel to the x-z plane are covered by

a reflector over the bottom 1.5m. As we can see, each region is reflected back into

the room.

In reality, we will only place small reflectors at specific locations to provide

coverage in dead spots. So, for example, if we have a dead area in a part of region

4, we can cover it with a reflection of either region 4, 5, 6, 7, or 8 (depending on

where the dead spot is located). Let us assume that the location of the dead spot

is such that it is covered by the reflection of region 5. In that case, from the point

of view of constructing a STDMA schedule, we need make no changes – this part of
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Figure 8.1: Reflected regions assume two walls are reflective at the bottom 1.5m.

region 4 is simply assigned to region 5 and users in the dead spot share bandwidth

with the users located in region 5.

While the scheduling issue is simple to deal with, we do have to be aware of

interference that is caused by reflected signals. Thus, assume that the dead spot

in region 4 is covered by the reflection of region 7 and further assume that region

4 and 7 are scheduled in the same STDMA slot. In this case, there will be some

interference caused at parts of region 4 from the reflected signal of region 7. Thus

users need to place a null in the direction of the reflector. Since users are equipped

with 20-element antenna arrays, this is not a problem.

We evaluate the data rate achieved with a linear array for three different cases

when entire regions are a dead spot. The three cases considered are that either

region 1 or region 4 or region 13 are dead spots. We use 7 modules and form M−1

nulls from each module to maximize average throughput. For the regions covered

by reflections, we use a 10dBm transmit power. Figure 8.2 plots the average data

rate in each region. As expected, average throughput in all LOS regions remains
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high while the regions that are dead spots show lower average throughput. The

reason the throughput is lower is that the signal path length is longer when going

via the reflector and because of attenuation of 3dB at the reflector. The throughput

of region 13 is much lower than that of regions 1 and 4 because the total interference

in region 13 is higher – region 13 is in the center of the room and is thus susceptible

to more interference from direct as well as reflected paths. However, in general,

the data rates achieved are still in the Gbps range for all cases.
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Figure 8.2: Data rate for three dead spot scenarios (Linear Array).

Next, let us consider the use of reflectors when the antenna array is circular.

Unlike the linear case, the regions are smaller and better contained. Therefore,

it is simpler to deploy reflectors and schedule transmissions. For example, if a

dead spot occurs in region 15, then during the STDMA slot when region 15 is

scheduled, rather than transmitting directly to region 15, the AP forms its beam

at an appropriately placed reflector that covers region 15. Thus, the schedule will
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Figure 8.3: Data rate for two dead spot scenarios (Circular Array).

not change. The drawback is the added interference at neighboring regions since

the reflected beam will spread out more as it travels a longer distance (AP to

reflector to region 15). Figure 8.3 shows the data rate for the circular array case

when the regions 11 and 15 are in dead spots. The data rate at these regions when

using reflectors is 600 Mbps and 500 Mbps respectively.

8.2 ACTIVE REFLECTORS

In Figure 8.4 we show a typical room with several communicating pairs of devices.

The wall-mounted display is showing a home movie that is streamed from a camera

while a pair of users has set up a separate link to communicate and a third link

connects a media server to a user’s music headset. In the context of this network

model, we note that there exists a problem with link breakage or degradation
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because of interference. For instance, consider Figure 8.5 where a person has

walked into the room. In this position, the presence of the user can break or

severely degrade link 2 between the video camera and the display. Figure 8.6

shows a case where a new user enters the room and sets up a link with another

device. This causes link 3 to degrade due to interference. In both of these cases,

the existing links need to be repaired so as to maintain the needed data rate. This

chapter studies the problem of selecting links that meet the needed data rate for

pairwise communication in such indoor environments.

Media
Server

video camera

screen

1

2

3

Figure 8.4: A typical use environment showing 3 pairs of communicating pairs.

The approach we investigate relies on the existence of one or more repeaters

strategically placed about the room. These devices provide alternative routes

between communicating pairs. For the case illustrated in Figure 8.5, a new 2-hop

link can be established between the video camera and display that is obstruction

free as shown in Figure 8.7. Likewise, when the quality of link 3 in Figure 8.6

degrades due to LoS interference, the link can be recreated via another repeater,

also as shown in Figure 8.7. These examples illustrate the benefits of repeaters
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Media
Server

Figure 8.5: Link 1 between video camera and screen degrades due to obstruction

(person).

Media
Server

video camera

screen

1

2

3

video projector

4

interference

Figure 8.6: Interference caused at the user of link 3 by the appearance of new link

4.
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Media
Server

Repeater

Repeater

Figure 8.7: Repairing links using repeaters.

but it should be clear that in more complex environments, the placement and

selection of repeaters is a non-trivial problem. Indeed, it is quite possible that

using a repeater to fix one link may well degrade another existing link. Also, if

several repeaters are needed simultaneously, the assignment of repeaters to links is

key to reaching the required data rate per pair-wise connection as well as system

throughput. In this chapter we study the problem of repairing links via repeaters

and propose an algorithm for the assignment problem. We conduct a detailed

analysis of the solution and study how it scales with increasing numbers of links.

8.3 SYSTEM MODEL

Figure 8.4 illustrates the usage model we consider. In general, we assume there

are n pairs of communicating nodes and some number k of repeaters deployed

about the room (the repeaters may well be other idle nodes that are tasked to

aid active connections). All the nodes and repeaters are assumed to be equipped
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with smart antennas, each with M antenna elements. The nodes and repeaters

can beamform in any direction. Further, since a repeater serves to connect a

communicating pair of nodes, we assume that it can simultaneously communicate

with both the nodes that form the end-points of the link. Thus, the repeaters may

be implemented either as store and forward nodes that receive packets on one link

and then forward them on the other or as cut-through devices where the incoming

signal is not decoded but simply forwarded on the outgoing link. We note that the

analysis in this thesis is valid for either model.

interferece is generated at B 

due to C-D communication

A

B

C

D

Figure 8.8: Degradation of a link due to interference from another.

The problem we consider can be summarized as follows: given n communicating

node pairs and k repeaters, how can we establish n connections such that data rates

are maximized for each pair? The problem is non-trivial because of interference

and the existence of obstructions in the LoS path between pairs of communicating

nodes. Figure 8.8 illustrates a simple case where one link interferes with another,

thus reducing the data rate for that link1. As we can see, the transmissions from

1We emphasize that our focus in this thesis is on the data rates achievable using appropriate

110



www.manaraa.com

node A to B will generate an interfering signal at node D thus degrading the SINR

(Signal to Interference and Noise Ratio) and the data rate at D.

One can argue that with narrow enough beams, the amount of such interfer-

ence can be eliminated or made negligible. In order to study this assertion further,

we ran MATLAB simulations for random node placements and measured the in-

terference. For a given n, we randomly uniformly place each node of that link

somewhere within a room of size 10mx10m. Each node is assumed to have a linear

array with M = 20 antenna elements. We use standard expressions for computing

the array factor (AF) [17],

AF =
M
∑

i=1

ej(i−1)kd(sin θ−sin θ0) (8.1)

where k = 2π/λ and d is the antenna element spacing. θ0 is the angle at which

we are forming the main beam and θ is the angle at which we are computing the

array factor. λ is the wavelength at 60 GHz.

Each transmitter beamforms towards its receiver and each receiver beamforms

towards its transmitter. At each receiver we calculate the total interference gen-

erated from each of the other n− 1 transmitters. To do this accurately, we use a

detailed 60GHz propagation model (described in [55]) that we have built in MAT-

LAB. The model uses measured attenuation data for transmissions through and

reflections off surfaces to predict the signal strength at each point in the room.

Thus, at each receiver, we measure the sum total of direct as well as reflected

signal components that act as interference. The path loss exponent is assumed to

be 2.1 following [40]. The simulation model also accounts for inter-symbol inter-

ference due to multi-path between a communicating pair. We use a symbol time of

resource allocation algorithms at the Physical layer. We assume that collision events (i.e., where
two or more transmissions collide at a receiver) are handled by a MAC layer.
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Room dimensions 10m x 10m x 3m

Transmit power 10 dBm

Bandwidth 640 MHz

Modulation Table 8.2

No. antenna elements M = 20

Table 8.1: Experimental Parameters.

1.5625ns for the 640MHz channel considered. Other system parameters used are

given in Tables 8.1 and 8.2.

Modulation Code Rate Min Eb/N0 for Pb ≤ 10−6 Rate (Mbps)

64-QAM 3/4, 1/2 22.65 dB 1080, 960

16-QAM 3/4, 1/2 19.1 dB 720, 480

QPSK 3/4, 1/2 16.7 dB 360, 240

BPSK 3/4, 1/2 11.45 dB 180, 120

Table 8.2: Bit per second for different modulation schemes [39].

Figure 8.9 plots the number of links that break due to interference as a function

of n. A link breaks if the SINR at the receiver is low enough that none of the 60

GHz rates can be supported. We see that when there are 10 links, on average

2 break and as many as 5 can break depending on the actual positions of the

communicating nodes. This is despite the fact that we use highly directional beams

for communication. The effect of interference is better illustrated when we look

at Figure 8.10 where we plot the per-link throughput (max and average). Here,

as the number of links increases, the average throughput starts falling linearly

reaching a low of 600Mbps with 20 links. The inescapable conclusion is that,

despite narrow beams and the constrained propagation behavior of 60 GHz signals,

there is sufficient interference between simultaneous links to cause communication
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Figure 8.9: Impact of interference in number of broken links

failure. Hence the case for repeaters is well-justified.
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Figure 8.10: Impact of interference in throughput

8.4 ANALYTICAL MODEL

Let p1, p2, · · · , pn denote the n communicating pairs of nodes and let k be the

number of available repeaters. An allocation ~a is a n-tuple (a1, a2, · · · , an) where,

0 ≤ ai ≤ k such that, ∀ai, aj > 0, i 6= j, ai 6= aj . The interpretation is that if

ai = 0 then the pair pi communicates directly. If ai = l then the pair sets up a

connection via repeater l. For a given allocation ~a let {r1, r2, · · · , rn} be the data

rates achieved by each pair of communicating nodes (after considering interference,

attenuation, etc.) and let r(~a) = min{r1, r2, · · · , rn}. Define ~a∗ to be the optimal
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allocation if,

r(~a∗) ≥ r(~a), ∀~a ∈ A

where A is the set of all possible allocations. The number of allocations can be

written as,

|A| =

k
∑

i=0





k

i









n

i





Observe that the optimal solution may only use k′ ≤ k repeaters. We note that

the problem of finding ~a∗ can be shown to be NP-hard (equivalent to integer

programming).

The more realistic version of the problem is one where each pair of communi-

cating nodes tries to optimize its performance independently of the other pairs.

In this distributed version of the problem, the definition of optimum remains un-

changed but the problem of finding the optimal solution is harder. In the next

section we focus on this distributed problem and develop a simple solution to it.

8.5 GREEDY ALGORITHM

We develop a distributed greedy algorithm for finding an allocation that, in most

cases, achieves the optimal link allocation. The algorithm is iterative and works

as follows:

1. Initially each link is set up directly between the two end-points.

2. Each pair computes the best achievable rate for each direction of communi-

cation.

3. If a link does not achieve 800Mbps rate (in either direction), it will randomly

uniformly choose a free repeater.
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4. The link is now set up via this repeater, and this is done by all the links that

fall below 800 Mbps.

5. After this step, each link recomputes the achievable data rate. It is possible

that a previously good link now shows degraded performance due to inter-

ference from a newly rerouted link. As previously, every link that falls below

the 800 Mbps threshold selects a new free repeater.

6. The algorithm iterates until no further improvement is seen in two consecu-

tive steps. It is possible that the algorithm terminates with some pairs seeing

data rates that are below the 800Mbps threshold.

Figure 8.11 illustrates the workings of this algorithm for a case when we have n = 6

and k is unrestricted (this is a screenshot of a visualization tool built on top of our

MATLAB simulator). The room is 10mx10m and all nodes as well as repeaters

are at a height of 1m. In the figure, each of the six pairs is labeled 1– 6 and the

repeaters that get used are numbered R1, R2, etc. Initially, each of the pairs sets

up a direct connection between the two end-points using their smart antennas.

The bottom two bar charts in the figure correspond to the four iterations of the

algorithm where the SINR and Rate is shown at the end of each iteration for each

of the six pairs of nodes. Each bar (in a set of four bars) is one iteration of the

algorithm for a given node.

In the figure, we plot the minimum observed SINR for each pair as the first

bar (of the four bars) and is labeled by ‘D’. The achieved data rate for each of

the pairs is shown in the bottom most plot. Pairs 3 and 4 have a low data rate

of 600Mbps and they each re-route the connection via repeaters in the next step

– pair 3 goes via R8 and pair 4 goes via R1. The new SINRs and data rates for

the five pairs are shown as the second bar in each group of bars in the bottom two

plots. As a result of this re-routing (pair 3 via R8 and pair 4 via R1), the SINR for
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Figure 8.11: Illustration of the greedy algorithm (R-repeaters, node pairs are num-

bered from 1-6).

pair 5 drops, as does its data rate. Pairs 1 and 2 also see a small degradation in

SINR but the data rate remains high. In the next iteration, pair 4 switches from

R1 to R4 and pair 5 now chooses to go via a repeater R7. This improves pair 5’s

data rate but pair 4 is still below threshold. Finally, pair 4 changes the repeater

yet again and selects R3. At this point, all the pairs have a data rate greater than
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the threshold of 800 Mbps and the algorithm terminates.

8.6 EXPERIMENTAL EVALUATION

The goal of the simulations is to understand the effectiveness of repeaters in miti-

gating link failure. The metrics we used to study this question are:

• Data rate achieved per user,

• Number of repeaters used to fix all link breakages,

• Percentage improvement in throughput when using repeaters.

In order to get a comprehensive understanding of how repeaters may help, we used

a large number of node placements in our study. Specifically, we use a room of size

10mx10m within which we placed 2n nodes randomly uniformly giving us n links.

We considered n = 4, 5, 6, 7, 8. For each value of n we randomly generated 1000

different configurations and studied the performance of our algorithm in each case.

Repeaters are placed at grid locations within the room and we use 16 repeaters in

all. Note that no more than n repeaters will be used for a given n since we only

consider cases when a link is routed through at most one repeater. The case when

the number of repeaters k < n is a subset of the case when k is unrestricted. For

instance, if the number of repeaters used for a n is l then we know that using k < l

will result in (k − l) broken links.

Finally, we place the nodes and repeaters all at a height of 1m above the floor.

There are two reasons for this choice. First, in real deployments, the repeaters may

actually be other idle nodes rather than special purpose devices. And second, as

compared to the case when repeaters are deployed on the ceiling, the interference

from repeaters towards the receivers will be significant in this case. This gives us

a good lower bound on the benefits of using repeaters.
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Figure 8.12: Overall improvement in data rates with repeaters.

In Figure 8.12 we plot the average per link data rate achieved as a function of

the number of links with and without repeaters. We see that when using repeaters,

the average per link data rate continues to be above 1Gbps whereas the data rate

is much lower when we do not allow repeaters. Also, the average data rate per

link falls with increasing number of links because there is greater interference, even

when using repeaters. Figure 8.13 plots the average number of repeaters used as

a function of n (averaged over 1,000 runs). It is interesting to see that even with

n = 8 pairs, we use an average of only 2 repeaters. But the benefits of adding

these two (on average) repeaters is enormous - the average data rate jumps from
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less than 900Mbps to over 1Gbps/user.

4 5 6 7 8
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Number of pairs (n)

A
ve

ra
ge

 n
um

be
r 

of
 r

ep
ea

te
rs

 u
se

d

Figure 8.13: Average number of repeaters used.

In order to study the application of repeaters in more detail, let us consider the

case when there are n = 6 pairs. The plot for the data rate in Figure 8.14 shows

the expected improvement in data rate per link when using repeaters. The x-axis

reports on the number of degraded links (when all pairs use the direct LoS link).

When no link is degraded the data rate seen by each pair is over 1Gbps. When

one pair’s link is subject to interference, the average data rate without repeaters

falls to 930Mbps. But when repaired using a repeater, the data rate climbs to over

1Gbps. When 4 or 5 of the six pairs see link degradation due to interference, the
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average data rate is at about 500Mbps only but jumps up to 1Gbps with repeaters.
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Figure 8.14: Improvement in data rate for n = 6 links.

In order to understand how often links degrade, Figure 8.15 plots the pdf

(probability density function) of the number of links that fall below threshold when

repeaters are not used. 30% of the time we see that repeaters are not required since

no pair sees degraded link quality. However, about 35% of the time one pair does

see poor quality of its direct link. Interestingly, there are cases when 5 out of

6 links fall below threshold. This clearly underscores the impact of interference

and the need for repeaters. Figure 8.16 plots the number of repeaters used as a

function of the number of links that degrade. The interesting observation is that

the number of repeaters used scales linearly with the number of degraded links –

this means that in most cases, repairing one link does little to improve another

link’s performance and thus each degraded link needs its own repeater. In some

cases, for instance when 4 links are broken, the average number of repeaters used
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Figure 8.15: Probability density function of number of links broken for n = 6 links.

is 4.5. The reason for this is that re-routing a broken link via a repeater tends to

break a previously good link (as we see in Figure 8.11 where link 5 was originally

in good condition but then gets degraded due to link 4 being rerouted). Therefore,

the total number of repeaters we may use could exceed the number of broken links

without repeaters. Figure 8.17 plots the percentage improvement in data rate

when using repeaters. We see that in all cases, the improvement is over 50% thus,

again, showing the benefits and need to use repeaters.

8.7 DISCUSSION

We consider the problem of maintaining high data rate connectivity between pairs

of communicating nodes in a 60GHz network. The challenge in maintaining these

good connections is link breakage due to interference or mobile obstructions. We

solve the problem by using repeaters that are randomly deployed about the room.
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Figure 8.16: Number of repeaters used for n = 6 links.

If a pair of communicating nodes sees their data rate drop, they re-route their

connection via a repeater. We show that a distributed greedy algorithm suffices to

bring the system to a stable operating point in most cases with all pairs achieving

over 1Gbps data rates.
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Figure 8.17: Improvement in data rate when using repeaters for n = 6 links.
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Chapter 9

CONCLUSIONS AND FUTURE WORK

In this dissertation we have exploited the unique propagation properties of 60 GHz

signals to provide gigabit/second rates to individual users in typical office settings.

The research explored various challenges in using smart antennas for achieving this

goal while simultaneously dealing with problems posed by frequent link breakages

caused by mobile obstructions.

The following are the unique contributions of this research:

• Algorithms for antenna and/or access point placement in the room for 100%

coverage in the presence of different obstacles were developed. Given n ob-

structions (partitions or isothetic rectangles) we show that fewer than n

antennas are needed for full coverage. Indeed, if obstructions intersect in the

room, we show that we require one less antenna for each such intersection.

• An examination of signal coverage within rooms using different smart an-

tenna configurations revealed interesting ways to spatially partition the room

to maximize frequency re-use. This fact was exploited to achieve giga-

bit/sec/user throughput. Thus, linear antenna arrays partition the room

in long narrow strips (perpendicular to the antenna axis) whereas a circular

antenna array partitions the room in more convex shapes. In both cases, the

same frequency band can be used in partitions that are two partitions apart.

Thus, the 5 GHz frequency band can be split into three giving us well over
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1 GHz of spectrum for use in each narrow portion of a room. This, in turn,

enables us to provide very high data rates to each user.

• In addition to WLANs, 60 GHz can be used for device-to-device communi-

cation in a room. We developed efficient link assignment algorithms (with

repeaters located in the ceiling) to maximize throughput between each com-

municating pair. The algorithm is dynamic and adapts to changing configu-

rations in the room as well as changing interference.

• Given that links break easily when there are mobile obstructions (such as

people), we developed link repair algorithms that use passive reflectors lo-

cated strategically about the room to extend coverage into these blocked

areas. The passive reflectors degrade the signal by at least 3 dB but despite

this we show that aggregate throughput in these areas is still well above 600

Mbps. The approach of using passive reflectors works naturally with the

resource allocation algorithms developed.

• A great deal of work relied on detailed MATLAB simulations for validation.

To this end we developed one of the earliest indoor propagation models for

60 GHz based on measurement studies and geometric algorithms for mod-

eling signal propagation. This MATLAB code can be used for any room

configuration and is thus of general interest to the research community.

9.1 FUTURE WORK

When this research was undertakes, there were few 60 GHz radios available for

experimentation. Indeed, this part of the spectrum poses many design challenges

including antenna design to cover over 5 GHz of spectrum. However, since then,

some radios have been developed that cover portions of this spectrum. Therefore,
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a possible future research direction is implementation of the developed resource

allocation algorithms and experimentation using the available hardware. Another

research direction is the development of MAC protocols that are specific to this

frequency. Thus, CSMA protocols may not be a good choice because of the huge

bandwidth (and hence small packet sizes). Alternative MAC protocols that use

TDMA/FDMA/CDMA jointly appear to be a better choice. A detailed study of

these protocols using 60 GHz hardware is another avenue of research. A third

research direction is to develop MAC protocols closely tied with multi-media ap-

plications for specific application scenarios such as HDTV to Internet connections,

etc. These protocols have a specific mode of operation and can be made very ef-

ficient by using cross-layer design techniques where application needs drive MAC

and physical layer protocol design.
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Appendix A

PATH LOSS IN MATLAB

% This function return path loss in free spce from point p1 to point

% p2 and return path loss in db

% Input parameters:

% p1 - point 1 in pair

% p2 - point 2 in pair

% alpha - path loss exponent

function [loss] = PathLoss(p1,p2,alpha)

n = alpha; %path loss exponent

C = 0; %System Constant

d = points_dist_nd (3,p1,p2)/100;

loss = 10*n*log10(d)+C;

%This function returns the distance between point p1 and point p2

function dist = points_dist_nd ( dim_num, p1, p2 )
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dist = sqrt ( sum ( ( p1(1:dim_num) - p2(1:dim_num) ).^2 ) );
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Appendix B

LINEAR ARRAY IN MATLAB

%This function is to calculate the antenna gain of a linear array

%given the following parameters:

%xx - x coordinate of the antenna

%yy - y coordinate of the antenna

%zz - z coordinate of the antenna

%Rx - x coordinate of the angle of interest

%Ry - y coordinate of the angle of interest

%Rz - z coordinate of the angle of interest

%W - room size in width

%L - room size in length

%step - resolution of how accuracy the output should be

%nTheta - nulling direction

% M - number of array elements

%debug mode on = 1/off = 0

% weightM = 1 use exact weight

function G_est = linearGain4A_NULL(xx,yy,zz,Rx,Ry,Rz,...

W,L,step,nTheta,M,debug,weightM)
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% Assign the desired angle (DOA)

theta(1) = getMapAngle(xx,yy,zz,Rx,Ry,Rz);

% Follow by all interference angle

for q=1:length(nTheta)

theta(q+1) = nTheta(q);

end

if(Rz == 300)

GmaxArray = ones(50,50)*14;

else

GmaxArray = ones(50,50)*14;

end

Gmax = 14;

d = 0.5; % element spacing in wavelengths

u = [1;zeros(length(theta)-1,1)];

x = [1:step:W];

y = [1:step:L];

%----- Determine steering vectors and matrix of steering vectors -----%

i = -(M/2-.5):(M/2-.5);

for n = 1:length(theta)

A(:,n) = exp(1j*i*2*pi*d*(sin(theta(n) )-sin(theta(1)))).’;

end
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%----- Determine Array Weights -----%

if(length(theta)==M)

if(weightM == 1)

w = u.’*inv(A);

else

w = u.’*A’*inv(A*A’+1e-9*eye(M));

end

else

w = u.’*A’*inv(A*A’+1e-9*eye(M));

end

th = -pi/2:.001:pi/2;

AF = 0;

for l = -(M/2-.5):M/2-.5

AF = AF + w(l+(M/2+.5)).*exp(1j*l*2*pi*d*(sin(th)-sin(theta(1))));

end

AFn = abs(AF).^2/max(abs(AF).^2);

G_est = 10*log10(AFn.*10^(Gmax/10));

if(debug == 1)

figure1 = figure;

plot(th*180/pi,AFn,’b’);

hold on;
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plot(th*180/pi,AFno,’k’);

grid on;

plot([theta(1)*180/pi theta(1)*180/pi],[0 1],’r’);

hold on;

for i=1:length(nTheta)

plot([nTheta(i)*180/pi nTheta(i)*180/pi],[0 1],’g’);

hold on;

end

title(strcat(’Beamforming at ’,int2str(theta(1)*180/pi)));

legend1 = legend(’Exact weight’,’Estimated weight’,...

’DOA’,’Nulling SNOI’);

set(legend1,’Position’,[0.4142 0.5487 0.1946 0.2576]);

end

end
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Appendix C

CIRCULAR ARRAY IN MATLAB

%This function is to calculate the antenna gain of a circular array

%given the following parameters:

%xx - x coordinate of the antenna

%yy - y coordinate of the antenna

%zz - z coordinate of the antenna

%Rx - x coordinate of the angle of interest

%Ry - y coordinate of the angle of interest

%Rz - z coordinate of the angle of interest

%W - room size in width

%L - room size in length

%step - resolution of how accuracy the output should be

%nTheta - nulling direction in elevation angle

%nPhi - nulling direction in azimuthal angle

%debug mode on = 1/off = 0

function [G_est] = circularGain4A_NULL(xx,yy,zz,Rx,Ry,Rz,...

W,L,nTheta,nPhi,debug)

a = 1;

N = 20; %number of antenna element

th = [0:100]*pi/100;
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ph = [0:100]*2*pi/100;

pinc = 2*pi/N;

Gmax = 14;

[theta(1),phi(1)] = get3Angle(xx,yy,zz,Rx,Ry,Rz);

if(debug >= 1)

fprintf(’*********************\n’);

fprintf(’DOA Angle th=%f, ph=%f\n’,theta(1)*180/pi,phi(1)*180/pi);

fprintf(’NULL Angle th=%f, ph=%f\n’,nTheta*180/pi,nPhi*180/pi);

end

for q=1:length(nTheta)

theta(q+1) = nTheta(q);

phi(q+1) = nPhi(q);

end

%------------------calculate optimal weight----------------%%

NoOfsamples = 100;

lamda = 1; % c/f = 1

variance = 1/10; % Noise variance

d = lamda/2; % distance between elements

beta = 2 * pi; % Beta is phase propagation

% factor B = 2 pi / lamda

degr = pi/180;
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rdeg = 180/pi;

numplot = 360;

alpha=linspace(0,2*pi,numplot);

for n = 1 : N

U_d(n,1) = exp(-1j*2*pi*(sin(theta(1)).*...

cos(phi(1)-(n-1)*pinc)));

end

Covar_d = conj(U_d)*conj(U_d’);

S = conj(U_d);

NoOfsignals = length(nTheta);

for n = 1 : N

for k =1 : NoOfsignals

U_i(n,k) = exp(-1j*2*pi*(sin(nTheta(k)).*cos(nPhi(k)-(n-1)*pinc)));

end

end

Covar_n = variance * eye(N);

Covar_i = zeros(N);

for k = 1 : NoOfsignals

Covar_i = Covar_i + conj(U_i(:,k))*conj(U_i(:,k)’);
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end

Covar = Covar_n + Covar_d + Covar_i;

W_opt = inv(Covar) * S;

W_optc = conj(W_opt’);

Y = zeros(180,360);

for n = 1: N

for t = (1:180)

for p = (1:360)

X(q,t,p) = exp(-j * (q-1) * 2 * pi/lamda * ...

d * cos(degr*theta));

X(n,t,p) = exp(-1j*2*pi*(sin(degr*t).*...

cos(degr*p-(n-1)*pinc)));

Y(t,p) = Y(t,p) + W_optc(n)*exp(-1j*2*pi*...

(sin(degr*t).*cos(degr*p-(n-1)*pinc)));

end

end

end

AF = Y;

%------------------

AFn = abs(AF).^2/max(max(abs(AF).^2));

G_est = 10*log10(AFn.*10^(Gmax/10));
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if(debug >= 1)

% figure(1);

% plot(th*180/pi,AFn(:,ceil(phi(1)/(2*0.0314)+1)));

% title(strcat(’Beamforming at ’,int2str(theta(1)*180/pi),’, max gain

% is ’,int2str(DOA_gain)));

DOA_gain = G_est(floor(theta(1)*rdeg+1),floor(phi(1)*rdeg+1));

fprintf(’-----\nDOA Gain is %f\n’,DOA_gain);

if(length(theta)>1)

NULL_gain = G_est(floor(theta(2)*rdeg+1),floor(phi(2)*rdeg+1));

fprintf(’NULL Gain is %f\n’,NULL_gain);

end

ci =0;

for i=1:10:W

ci = ci+1;

cj=0;

for j=1:10:L

cj=cj+1;

[t,p] = get3Angle(i,j,50,500,500,300);

g2d(ci,cj)=G_est(floor(t*rdeg+1),floor(p*rdeg+1));

end

end

surf([1:100],[1:100],g2d);

plane_max = 0;

plane_min = 20;
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plane_max_id = [0 0];

plane_min_id = [0 0];

for i=1:180

for j=1:360

if(i>=116)

if(plane_max < G_est(i,j))

plane_max = G_est(i,j);

plane_max_id = [i,j];

end

if(plane_min > G_est(i,j))

plane_min = G_est(i,j);

plane_min_id = [i,j];

end

end

end

end

fprintf(’plane Maximum Gain = %f , \nAngle th = %f, ...

ph = %f\n\n’,plane_max,plane_max_id(1),...

plane_max_id(2));

fprintf(’plane Minimum Gain = %f , \nAngle th = %f, ...

ph = %f\n\n’,plane_min,plane_min_id(1),...

plane_min_id(2));

end

end
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